6/21/12

CERTIFICATION

SDG No:

FA42237

·A42237

Laboratory:

Accutest, Florida

Site:

BMS, Humacao, PR

Matrix:

AQ - Water

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC, Humacao, PR. Samples were taken March 20, 2017 and were analyzed in Accutest Laboratory of Orlando, Florida that reported the data under SDG No.: FA42237. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section or the QC requirements of the method employed. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The organic data sample summary form shows for analyte results that were qualified.

In summary the results are valid and can be used for decision making purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
FA42237-1	EB032017	AQ – Equipment Blank	VOCs; SVOCs; SVOCs (SIM); VPHs; EPHs; LMWA; Pesticides
FA42237-2	FB032017	AQ – Field Blank Water	VOCs; SVOCs; SVOCs (SIM); VPHs; EPHs; Pesticides
FA42237-3	MW-9	Groundwater	VOCs; SVOCs; SVOCs (SIM); VPHs; EPHs; LMWA
FA42237-4	MW-11	Groundwater	VOCs; SVOCs; SVOCs (SIM); VPHs; EPHs; LMWA; Pesticides
FA42237-4D	MW-11 MSD	Groundwater	VOCs; SVOCs; SVOCs (SIM); VPHs; EPHs; LMWA; Pesticides
FA42237-4S	MW-11 MS	Groundwater	VOCs; SVOCs; SVOCs (SIM); VPHs; EPHs; LMWA; Pesticides
FA42237-5	S-30	Groundwater	VOCs; SVOCs; SVOCs (SIM); VPHs; EPHs; LMWA; Pesticides
FA42237-6	MW-19	Groundwater	VOCs; SVOCs; SVOCs (SIM); VPHs; EPHs; LMWA
FA42237-7	TB032017NR	AQ – Trip Blank Water	VOCs
FA42237-8	TB032017HR	AQ – Trip Blank Water	VOCs

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 7, 2017

Pafael Inflate

. Méridaz

LIC. 1008 A 76 7227

Report of Analysis

Ву

SP

Analyzed

03/29/17

Page 1 of 2

Client Sample ID: EB032017 Lab Sample ID:

FA42237-1

Date Sampled: Date Received:

Prep Date

n/a

03/20/17

Matrix: Method: AQ - Equipment Blank SW846 8260C

03/21/17

Q

Percent Solids: n/a

Project:

BMSMC, Humacao, PR

DF

Analytical Batch Prep Batch n/a VM4067

Run #1 Run #2

Run #1

Run #2

Purge Volume

 $5.0 \, ml$

File ID

M94816.D

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.31	ug/I
100-44-7	Benzyl Chloride	ND	2.0	0.36	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.41	ug/l
106-99-0	1,3-Butadiene	ND	2.0	0.26	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.67	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l
96-12-8	1,2-Dibromo-3-chloropropan a	ND	5.0	1.0	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/I
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l
76-13-1	Freon 113	ND	1.0	0.48	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: EB032017 Lab Sample ID: FA42237-1

Matrix: AQ - Equipment Blank
Method: SW846 8260C

Project: BMSMC, Humacao, PR

Date Sampled: 03/20/17
Date Received: 03/21/17

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
99-87-6	p-Isopropyltoluene	ND	1.0	0.21	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	5.3	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	5.3	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/i	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/I	
109-99-9	Tetrahydrofuran	ND	5.0	1.6	ug/I	
108-88-3	Toluene	ND	1.0	0.30	ug/I	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.32	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	102%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-1	25%	
2037-26-5	Toluene-D8	91%		85-1	12%	/
460-00-4	4-Bromofluorobenzene	103%		83-1	18%	

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

SP

n/a

03/29/17

Page 1 of 2

Client Sample ID: FB032017

Lab Sample ID: Matrix:

FA42237-2

AQ - Field Blank Water

SW846 8260C

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Method: Project:

BMSMC, Humacao, PR

1

File ID

Run #1

DF Analyzed

Prep Date n/a

Analytical Batch Prep Batch

VM4067

Run #2

Purge Volume

M94817.D

Run #1

Run #2

VOA TCL List (SOM02.0)

 $5.0 \, ml$

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
100-44-7	Benzyl Chloride	ND	2.0	0.36	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
106-99-0	1,3-Butadiene	ND	2.0	0.26	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan a	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: FB032017

Lab Sample ID:

FA42237-2 AQ - Field Blank Water

Matrix: Method:

SW846 8260C

Project:

BMSMC, Humacao, PR

Date Sampled: Date Received:

03/20/17 03/21/17

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
99-87-6	p-Isopropyltoluene	ND	1.0	0.21	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	5.3	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	5.3	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.6	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/I	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.32	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	99%		79-1	25%	
2037-26-5	Toluene-D8	92%		85-1	12%	
460-00-4	4-Bromofluorobenzene	104%		83-1	18%	

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: MW-9

Lab Sample ID: FA42237-3

Matrix: Method: AQ - Ground Water SW846 8260C

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Project: BMSMC, Humacao, PR

File ID M94818.D Run #1

DF Analyzed 03/29/17 1

Ву SP Prep Date n/a

Prep Batch

Q

Analytical Batch VM4067

n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.31	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.36	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.41	ug/l
106-99-0	1,3-Butadiene	ND	2.0	0.26	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.67	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l
96-12-8	1,2-Dibromo-3-chloropropan a	ND	5.0	1.0	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l
76-13-1	Freon 113	ND	1.0	0.48	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-9

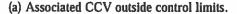
Lab Sample ID: FA42237-3

Matrix: Method:

Project:

AQ - Ground Water SW846 8260C

BMSMC, Humacao, PR


Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Q

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l
99-87-6	p-Isopropyltoluene	ND	1.0	0.21	ug/l
79-20-9	Methyl Acetate	ND	20	5.0	ug/l
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l
100-42-5	Styrene	ND	1.0	0.22	ug/l
75-85-4	Tert-Amyl Alcohol	ND	20	5.3	ug/l
75-65-0	Tert-Butyl Alcohol	ND	20	5.3	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l
109-99-9	Tetrahydrofuran	ND	5.0	1.6	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/i
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/i
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.32	ug/l
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/I
	m,p-Xylene	ND	2.0	0.47	ug/I
95-47-6	o-Xylene	ND	1.0	0.26	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	102%		83-1	
17060-07-0	1,2-Dichloroethane-D4	97%		79-17	25%
2037-26-5	Toluene-D8	92%		85-11	12%
460-00-4	4-Bromofluorobenzene	101%		83-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: MW-11

Lab Sample ID: FA42237-4

Matrix: Method:

AQ - Ground Water SW846 8260C

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Q

Project: BMSMC, Humacao, PR

File ID DF Prep Batch **Analytical Batch** Analyzed By Prep Date M94819.D SP VM4067 Run #1 1 03/29/17 n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.31	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.36	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.41	ug/l
106-99-0	1,3-Butadiene	ND	2.0	0.26	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.67	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l
96-12-8	1,2-Dibromo-3-chloropropan a	ND	5.0	1.0	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/I
76-13-1	Freon 113	ND	1.0	0.48	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l

nfael Infa Méndez LIC.# 188

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-11

Lab Sample ID: FA42237-4

Matrix: Method: AQ - Ground Water SW846 8260C

Project:

BMSMC, Humacao, PR

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Q

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	ı
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
99-87-6	p-Isopropyltoluene	ND	1.0	0.21	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	1.2	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	5.3	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	5.3	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.6	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.32	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	103%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	97%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-11	2%	
460-00-4	4-Bromofluorobenzene	101%		83-11	8%	

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: \$-30

Lab Sample ID:

FA42237-5

Matrix:

AQ - Ground Water

Method:

SW846 8260C

Date Sampled:

03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Project: BMSMC, Humacao, PR

Run #1

File ID M94820.D DF Analyzed 1 03/29/17

Ву SP

Prep Date n/a

Prep Batch n/a

Q

J

J

Analytical Batch VM4067

Run #2

Purge Volume

Run #1 Run #2

5.0 ml

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Unit
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	0.48	1.0	0.31	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.36	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.41	ug/l
106-99-0	1,3-Butadiene	ND	2.0	0.26	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l
108-90-7	Chlorobenzene	0.34	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.67	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l
96-12-8	1,2-Dibromo-3-chloropropan a	ND	5.0	1.0	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l
76-13-1	Freon 113	ND	1.0	0.48	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
					_

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

RL

MDL

Units

Result

Client Sample ID: S-30

FA42237-5 Lab Sample ID:

Matrix: Method:

CAS No.

AQ - Ground Water SW846 8260C

Project: BMSMC, Humacao, PR

Compound

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Q

VOA TCL List (SOM02.0)

CAS No.	Compound	Kesan	KL	MIDL	Omis
98-82-8	Isopropylbenzene	1.2	1.0	0.22	ug/l
99-87-6	p-Isopropyltoluene	ND	1.0	0.21	ug/l
79-20-9	Methyl Acetate	ND	20	5.0	ug/l
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	4.5	1.0	0.23	ug/l
100-42-5	Styrene	ND	1.0	0.22	ug/l
75-85-4	Tert-Amyl Alcohol	ND	20	5.3	ug/l
75-65-0	Tert-Butyl Alcohol	32.0	20	5.3	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l
109-99-9	Tetrahydrofuran	ND	5.0	1.6	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.32	ug/l
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l
	m,p-Xylene	ND	2.0	0.47	ug/l
95-47-6	o-Xylene	ND	1.0	0.26	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	103%		83-11	18%
17060-07-0	1,2-Dichloroethane-D4	99%		79-12	
2037-26-5	Toluene-D8	91%		85-11	12%
460-00-4	4-Bromofluorobenzene	102%		83-11	18%

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: MW-19

Lab Sample ID: Matrix:

FA42237-6 AQ - Ground Water

SW846 8260C

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Method: Project:

BMSMC, Humacao, PR

Prep Date Prep Batch **Analytical Batch** File ID DF Analyzed By SP VM4072 M94894.D 10 03/31/17 n/a n/a

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	250	100	ug/l	
71-43-2	Benzene	ND	10	3.1	ug/l	
100-44-7	Benzyl Chloride	ND	20	3.6	ug/l	
74-97-5	Bromochloromethane	ND	10	4.5	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.4	ug/l	
75-25-2	Bromoform	ND	10	4.1	ug/l	
106-99-0	1,3-Butadiene	ND	20	2.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	50	20	ug/l	
75-15-0	Carbon Disulfide	ND	20	5.3	ug/l	
56-23-5	Carbon Tetrachloride	ND	10	3.6	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
75-00-3	Chloroethane	ND	20	6.7	ug/l	
67-66-3	Chloroform	ND	10	3.0	ug/l	
110-82-7	Cyclohexane	ND	10	3.9	ug/l	
124-48-1	Dibromochloromethane	ND	10	2.8	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan a	ND	50	10	ug/l	
106-93-4	1,2-Dibromoethane	ND	20	2.8	ug/l	
75-71-8	Dichlorodifluoromethane	ND	20	5.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	10	3.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	10	2.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	10	2.6	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	3.4	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	3.1	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	3.2	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	10	2.8	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	10	2.2	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	4.3	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.9	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	2.1	ug/l	
100-41-4	Ethylbenzene	646	10	3.6	ug/l	
76-13-1	Freon 113	ND	10	4.8	ug/l	
591-78-6	2-Hexanone	ND	100	20	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-19

Lab Sample ID: FA42237-6

Matrix: Method: AQ - Ground Water SW846 8260C

Project: BMSMC, Humacao, PR

Date Sampled: 03/ Date Received: 03/

03/20/17: 03/21/17

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	6.6	10	2.2	ug/l	J
99-87-6	p-Isopropyltoluene	ND	10	2.1	ug/I	
79-20-9	Methyl Acetate	ND	200	50	ug/l	
74-83-9	Methyl Bromide	ND	20	5.9	ug/l	
74-87-3	Methyl Chloride	ND	20	5.0	ug/l	
108-87-2	Methylcyclohexane	ND	10	4.4	ug/l	
75-09-2	Methylene Chloride	ND	50	20	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	50	10	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	2.3	ug/l	
100-42-5	Styrene	ND	10	2.2	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	200	53	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	200	53	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	3.0	ug/l	
127-18-4	Tetrachloroethylene	ND	10	2.2	ug/l	
109-99-9	Tetrahydrofuran	ND	50	16	ug/l	
108-88-3	Toluene	ND	10	3.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	6.1	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.5	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	4.7	ug/l	
79-01-6	Trichloroethylene	ND	10	3.5	ug/l	
75-69-4	Trichlorofluoromethane	ND	20	5.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	10	3.2	ug/l	
75-01-4	Vinyl Chloride	ND	10	4.1	ug/l	
	m,p-Xylene	1160	20	4.7	ug/I	
95-47-6	o-Xylene	66.4	10	2.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	102%		83-1		
17060-07-0	1,2-Dichloroethane-D4	99%		79-1	25%	
2037-26-5	Toluene-D8	93%		85-1	12%	
460-00-4	4-Bromofluorobenzene	100%		83-1	18%	

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: EB032017NR

Lab Sample ID:

FA42237-7

Matrix:

AQ - Trip Blank Water

Method:

SW846 8260C

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Project:

BMSMC, Humacao, PR

File ID Run #1 M94822.D

DF 1

Analyzed 03/29/17

Ву SP

Prep Date n/a

Prep Batch n/a

Analytical Batch VM4067

Run #2

Purge Volume

Run #1

Run #2

VOA TCL List (SOM02.0)

5.0 ml

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.31	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.36	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.41	ug/l
106-99-0	1,3-Butadiene	ND	2.0	0.26	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.67	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l
96-12-8	1,2-Dibromo-3-chloropropan a	ND	5.0	1.0	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/I
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l/
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/V 🤄
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l\
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l
76-13-1	Freon 113	ND	1.0	0.48	ug/l

nfael Infan Méndez LIC. # 18

ND = Not detected

591-78-6

MDL = Method Detection Limit

ND

10

2.0

RL = Reporting Limit

E = Indicates value exceeds calibration range

2-Hexanone

J = Indicates an estimated value

ug/l

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

<u>`</u>

Report of Analysis

Client Sample ID: EB032017NR

Lab Sample ID: FA42237-7

Matrix: AQ - Trip Blank Water

Method: SW846 8260C

Project: BMSMC, Humacao, PR

Date Sampled: 03/20/17
Date Received: 03/21/17

Percent Solids: n/a

Q

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	(
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
99-87-6	p-Isopropyltoluene	ND	1.0	0.21	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyi Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	5.3	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	5.3	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.6	ug/l	
108-88-3	Toluene	3.5	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.32	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	104%		83-11		
17060-07-0	1,2-Dichloroethane-D4	99%		79-12		
2037-26-5	Toluene-D8	91%		85-11		
460-00-4	4-Bromofluorobenzene	101%		83-11	18%	
/	1001					

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Date Sampled:

Date Received:

03/20/17

03/21/17

Page 1 of 2

Client Sample ID: TB032017HR

Lab Sample ID: FA42237-8 Matrix: AQ - Trip Blank Water Method:

SW846 8260C Percent Solids: n/a

Project: BMSMC, Humacao, PR

File ID Prep Batch **Analytical Batch** DF Analyzed By Prep Date SP M94823.D 03/29/17 VM4067 Run #1 1 n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
100-44-7	Benzyl Chloride	ND	2.0	0.36	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
106-99-0	1,3-Butadiene	ND	2.0	0.26	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan a	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TB032017HR

Lab Sample ID:

FA42237-8

Matrix:

AQ - Trip Blank Water

Method: Project:

SW846 8260C

BMSMC, Humacao, PR

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
99-87-6	p-Isopropyltoluene	ND	1.0	0.21	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	5.3	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	5.3	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.6	ug/l	
108-88-3	Тошеле	2.4	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.32	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%		83-1	118%	
17060-07-0	1,2-Dichloroethane-D4	100%		79-1	25%	
2037-26-5	Toluene-D8	92%		85-1	112%	
460-00-4	4-Bromofluorobenzene	99%		83-1	118%	- /

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA42237

AMANYWP Anderson, Mulholland & Associates Account:

Project: BMSMC, Humacao, PR

FA42237-4 M94819.D 1 03/29/17 SP n/a n/a VM4067	Sample FA42237-4MS FA42237-4MSD FA42237-4	File ID M94824.D M94825.D M94819.D	DF 1 1	Analyzed 03/29/17 03/29/17 03/29/17	By SP SP SP	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VM4067 VM4067 VM4067
---	--	---	--------------	--	----------------------	-----------------------	---------------------------------	--

The QC reported here applies to the following samples:

Method: SW846 8260C

FA42237-1, FA42237-2, FA42237-3, FA42237-4, FA42237-5, FA42237-7, FA42237-8

		FA42237-4	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/i Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
67-64-1	Acetone	ND	125	107	86	125	99.6	80	7	50-147/21
71-43-2	Benzene	ND	25	27.3	109	25	25.3	101	8	81-122/14
100-44-7	Benzyl Chloride	ND	25	16.2	65	25	14.5	58	11	54-122/18
74-97-5	Bromochloromethane	ND	25	27.6	110	25	25.8	103	7	76-123/14
75-27-4	Bromodichloromethane	ND	25	25.0	100	25	21.9	88	13	79-123/19
75-25-2	Bromoform	ND	25	21.5	86	25	20.4	82	5	66-123/21
106-99-0	1,3-Butadiene	ND	25	1.7	7*	25	1.6	6*	6	65-135/31
78-93-3	2-Butanone (MEK)	ND	125	111	89	125	110	88	1	56-143/18
75-15-0	Carbon Disulfide	ND	25	23.9	96	25	19.0	76	23	66-148/23
56-23-5	Carbon Tetrachloride	ND	25	32.8	131	25	27.8	111	17	76-136/23
108-90-7	Chlorobenzene	ND	25	26.7	107	25	25.6	102	4	82-124/14
75-00-3	Chloroethane	ND	25	28.3	113	25	24.0	96	16	62-144/20
67-66-3	Chloroform	ND	25	24.6	98	25	22.9	92	7	80-124/15
110-82-7	Cyclohexane	ND	25	27.8	111	25	25.1	100	10	73-138/18
124-48-1	Dibromochloromethane	ND	25	22.8	91	25	20.7	83	10	78-122/19
96-12-8	1,2-Dibromo-3-chloropropane		25	20.0	80	25	17.2	69	15	64-123/18
106-93-4	1.2-Dibromoethane	ND	25	25.5	102	25	24.9	100	2	75-120/13
75-71-8	Dichlorodifluoromethane	ND	25	26.8	107	25	24.0	96	11	42-167/19
95-50-1	1,2-Dichlorobenzene	ND	25	26.9	108	25	26.1	104	3	82-124/14
541-73-1	1,3-Dichlorobenzene	ND	25	27.4	110	25	25.9	104	6	84-125/14
106-46-7	1,4-Dichlorobenzene	ND	25	26.8	107	25	25.1	100	7	78-120/15
75-34-3	1,1-Dichloroethane	ND	25	27.9	112	25	26.0	104	7	81-122/15
107-06-2	1,2-Dichloroethane	ND	25	23.7	95	25	22.5	90	5	75-125/14
75-35-4	1,1-Dichloroethylene	ND	25	27.9	112	25	26.0	104	7	78-137/18
156-59-2	cis-1,2-Dichloroethylene	ND	25	26.4	106	25	24.6	98	7	78-120/15
156-60-5	trans-1,2-Dichloroethylene	ND	25	29.8	119	25	27.4	110	8	76-127/17
78-87-5	1,2-Dichloropropane	ND	25	27.0	108	25	24.9	100	8	76-124/14
10061-01-5	cis-1,3-Dichloropropene	ND	25	24.5	98	25	21.5	86	13	75-118/23
10061-02-6	trans-1,3-Dichloropropene	ND	25	24.2	97	25	21.2	85	13	80-120/22
100-41-4	Ethylbenzene	ND	25	25.9	104	25	24.7	99	5	81-121/14
76-13-1	Freon 113	ND	25	28.5	114	25	25.1	100	13	72-134/20
591-78-6	2-Hexanone	ND	125	104	83	125	105	84	1	61-129/18
98-82-8	Isopropylbenzene	ND	25	27.9	112	25	26.3	105	6	83-132/15
99-87-6	p-Isopropyltoluene	ND	25	27.0	108	25	25.3	101	7	79-130/16
79-20-9	Methyl Acetate	ND	125	120	96	125	12500	ANIPO	4	65-126/18
74-83-9	Methyl Bromide	ND	25	24.8	99	25	Shirt was	-14 A	0	59-143/19

^{* =} Outside of Control Limits.

Page 2 of 2

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA42237

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Humacao, PR

FA42237-4 M94819.D 1 03/29/17 SP n/a n/a VM4067	Sample FA42237-4MS FA42237-4MSD FA42237-4	File ID M94824.D M94825.D M94819.D	DF 1 1	Analyzed 03/29/17 03/29/17 03/29/17	By SP SP SP	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VM4067 VM4067 VM4067
---	--	---	--------------	--	----------------------	--------------------------------	---------------------------------	--

The QC reported here applies to the following samples:

Method: SW846 8260C

FA42237-1, FA42237-2, FA42237-3, FA42237-4, FA42237-5, FA42237-7, FA42237-8

CAS No.	Compound	FA42237-4 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
74-87-3	Methyl Chloride	ND	25	23.1	92	25	20.7	83	11	50-159/19
108-87-2	Methylcyclohexane	ND	25	27.4	110	25	25.1	100	9	76-129/17
75-09-2	Methylene Chloride	ND	25	26.0	104	25	24.4	98	6	69-135/16
108-10-1	4-Methyl-2-pentanone (MIBK)		125	108	86	125	108	86	0	66-122/16
1634-04-4	Methyl Tert Butyl Ether	1.2	25	25.1	96	25	24.2	92	4	72-117/14
100-42-5	Styrene	ND	25	26.5	106	25	24.7	99	7	78-119/23
75-85-4	Tert-Amyl Alcohol	ND	250	242	97	250	246	98	2	65-124/23
75-65-0	Tert-Butyl Alcohol	ND	250	279	112	250	266	106	5	63-129/27
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	22.7	91	25	22.1	88	3	72-120/14
127-18-4	Tetrachloroethylene	ND	25	30.7	123	25	29.2	117	5	76-135/16
109-99-9	Tetrahydrofuran	ND	25	23.9	96	25	22.5	90	6	56-122/21
108-88-3	Toluene	ND	25	26.4	106	25	25.0	100	5	80-120/14
87-61-6	1,2,3-Trichlorobenzene	ND	25	27.9	112	25	27.1	108	3	68-131/25
120-82-1	1,2,4-Trichlorobenzene	ND	25	27.1	108	25	26.4	106	3	73-129/20
71-55-6	1,1,1-Trichloroethane	ND	25	26.7	107	25	24.7	99	8	75-130/16
79-00-5	1,1,2-Trichloroethane	ND	25	24.7	99	25	23.6	94	5	76-119/14
79-01-6	Trichloroethylene	ND	25	27.1	108	25	26.3	105	3	81-126/15
75-69-4	Trichlorofluoromethane	ND	25	33.6	134	25	29.2	117	14	71-156/21
95-63-6	1,2,4-Trimethylbenzene	ND	25	25.5	102	25	23.8	95	7	79-120/18
75-01-4	Vinyl Chloride	ND	25	28.4	114	25	25.1	100	12	69-159/18
	m,p-Xylene	ND	50	49.1	98	50	46.1	92	6	79-126/15
95-47-6	o-Xylene	ND	25	26.4	106	25	24.8	99	6	80-127/14
	, , , , , , , , , , , , , , , , , , ,									
CAS No.	Surrogate Recoveries	MS	MSD	FA	42237-4	Limits				
1868-53-7	Dibromofluoromethane	100%	98%	103	3%	83-1189	% :			
17060-07-0	1,2-Dichloroethane-D4	94%	91%	979	%	79-1259	%	1.	COMPO	DE
2037-26-5	Toluene-D8	96%	96%	929		85-1129	%	AR.		
460-00-4	4-Bromofluorobenzene	103%	104%	10:	1%	83-1189	%	13	Carl Bank	AF PRES

^{* =} Outside of Control Limits.

Report of Analysis

Page 1 of 3

Client Sample ID: EB032017 Lab Sample ID:

FA42237-1 AQ - Equipment Blank

Date Sampled: 03/20/17 Date Received: 03/21/17

Matrix: Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Q

Project:

BMSMC, Humacao, PR

File ID DF Analyzed **Analytical Batch** By Prep Date Prep Batch Run #1 4D016.D 1 03/30/17 NG 03/25/17 OP64335 S4D36

Run #2

Final Volume Initial Volume

Run #1 Run #2 1020 ml 1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	9.8	2.5	ug/l
59-50-7	4-Chloro-3-methyl Phenol	ND	4.9	0.58	ug/l
95-57-8	2-Chlorophenol	ND	4.9	0.62	ug/l
120-83-2	2,4-Dichlorophenol	ND	4.9	0.82	ug/l
105-67-9	2,4-Dimethylphenol	ND	4.9	0.72	ug/l
51-28-5	2,4-Dinitrophenol	ND	25	4.9	ug/l
534-52-1	4,6-Dinitro-o-cresol a	ND	9.8	2.0	ug/l
95-48-7	2-Methylphenol	ND	4.9	0.55	ug/l
	3&4-Methylphenol	ND	4.9	0.96	ug/l
88-75-5	2-Nitrophenol	ND	4.9	0.84	ug/l
100-02-7	4-Nitrophenol	ND	25	4.9	ug/l
87-86-5	Pentachlorophenol a	ND	25	4.9	ug/l
108-95-2	Phenol	ND	4.9	0.49	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	4.9	0.95	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	4.9	0.73	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	4.9	0.74	ug/l
83-32-9	Acenaphthene	ND	4.9	0.61	ug/l
208-96-8	Acenaphthylene	ND	4.9	0.63	ug/l
98-86-2	Acetophenone	ND	4.9	0.79	ug/l
120-12-7	Anthracene	ND	4.9	0.78	ug/l
1912-24-9	Atrazine	ND	4.9	1.0	ug/I
100-52-7	Benzaldehyde	ND	25	4.9	ug/l
56-55-3	Benzo(a)anthracene	ND	4.9	0.75	ug/l
50-32-8	Benzo(a) pyrene	ND	4.9	0.77	ug/l
205-99-2	Benzo(b)fluoranthene	ND	4.9	0.76	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	4.9	0.81	ug/l
207-08-9	Benzo(k)fluoranthene	ND	4.9	0.84	ug/l
92-52-4	1,1'-Biphenyl	ND	4.9	0.61	ug/l
101-55-3	4-Bromophenyl Phenyl Ether a	ND	4.9	0.83	ug/l
85-68-7	Butyl Benzyl Phthalate a	ND	4.9	0.98	ug/l
86-74-8	Carbazole	ND	4.9	0.59	ug/l
106-47-8	4-Chloroaniline ^a	ND	4.9	0.62	ug/l

itael Infante Méndez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: EB032017

Lab Sample ID:

FA42237-1

Matrix: Method:

Project:

AQ - Equipment Blank

SW846 8270D SW846 3510C

BMSMC, Humacao, PR

Date Sampled: Date Received:

Q

03/20/17 03/21/17

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
111-91-1	bis(2-Chloroethoxy)methane	ND	4.9	0.79	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	4.9	0.72	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	4.9	0.74	ug/l
91-58-7	2-Chloronaphthalene	ND	4.9	0.49	ug/l
7005-72-3	4-Chlorophenyl Phenyl Ether	ND	4.9	0.53	ug/l
218-01-9	Chrysene a	ND	4.9	0.83	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	4.9	0.79	ug/l
132-64-9	Dibenzofuran	ND	4.9	0.59	ug/l
91-94-1	3,3'-Dichlorobenzidine b	ND	4.9	0.63	ug/l
84-66-2	Diethyl Phthalate	ND	4.9	0.98	ug/I
131-11-3	Dimethyl Phthalate	ND	4.9	0.98	ug/I
84-74-2	Di-n-butyl Phthalate a	ND	4.9	0.98	ug/l
117-84-0	Di-n-octyl Phthalate	ND	4.9	0.98	ug/l
121-14-2	2,4-Dinitrotoluene	ND	4.9	0.80	ug/l
606-20-2	2,6-Dinitrotoluene	ND	4.9	0.70	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	4.9	0.98	ug/l
206-44-0	Fluoranthene	ND	4.9	0.54	ug/l
86-73-7	Fluorene	ND	4.9	0.69	ug/l
118-74-1	Hexachlorobenzene a	ND	4.9	0.68	ug/l
87-68-3	Hexachlorobutadiene	ND	4.9	0.49	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	4.9	1.8	ug/l
67-72-1	Hexachloroethane	ND	4.9	1.6	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	4.9	0.70	ug/l
78-59-1	Isophorone a	ND	4.9	0.76	ug/l
91-57-6	2-Methylnaphthalene	ND	4.9	0.59	ug/l
88-74-4	2-Nitroaniline	ND	4.9	1.8	ug/l
99-09-2	3-Nitroaniline a	ND	4.9	0.86	ug/l
100-01-6	4-Nitroaniline	ND	4.9	1.1	ug/l
98-95-3	Nitrobenzene	ND	4.9	0.91	ug/l
621-64-7	N-Nitrosodi-n-propylamine	ND	4.9	0.66	ug/l
86-30-6	N-Nitrosodiphenylamine a	ND	4.9	0.79	ug/l
85-01-8	Phenanthrene	ND	4.9	0.85	ug/l
129-00-0	Pyrene a	ND	4.9	0.67	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	4.9	0.49	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	34%		14-6	7%
4165-62-2	Phenol-d5	21%		10-5	0%
118-79-6	2,4,6-Tribromophenol	85%		33-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: EB032017

Lab Sample ID:

FA42237-1

Matrix: Method:

Project:

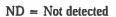
AQ - Equipment Blank

SW846 8270D SW846 3510C BMSMC, Humacao, PR

Report of Analysis

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a


ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	79%		42-108%
321-60-8	2-Fluorobiphenyl	81%		40-106%
1718-51-0	Terphenyl-d14	85%		39-121%

(a) Associated BS recovery outside control limits.

(b) Associated CCV and BS outside control limits.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

NG

03/25/17

Page 1 of 3

Client Sample ID: FB032017

Lab Sample ID:

FA42237-2

File ID

950 ml

4D017.D

AQ - Field Blank Water

Date Sampled: 03/20/17 Date Received: 03/21/17

SW846 8270D SW846 3510C

Analyzed

03/30/17

Percent Solids: n/a

OP64335

Q

Method: Project:

Matrix:

BMSMC, Humacao, PR

DF

1

Analytical Batch Prep Date Prep Batch

S4D36

Run #1

Run #2

Initial Volume Final Volume

Run #1

1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	11	2.6	ug/l
59-50-7	4-Chloro-3-methyl Phenol	ND	5.3	0.62	ug/l
95-57-8	2-Chlorophenol	ND	5.3	0.66	ug/l
120-83-2	2,4-Dichlorophenol	ND	5.3	0.88	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.3	0.78	ug/l
51-28-5	2,4-Dinitrophenol	ND	26	5.3	ug/l
534-52-1	4,6-Dinitro-o-cresol a	ND	11	2.1	ug/l
95-48-7	2-Methylphenol	ND	5.3	0.59	ug/l
	3&4-Methylphenol	ND	5.3	1.0	ug/l
88-75-5	2-Nitrophenol	ND	5.3	0.90	ug/l
100-02-7	4-Nitrophenol	ND	26	5.3	ug/l
87-86-5	Pentachlorophenol a	ND	26	5.3	ug/l
108-95-2	Phenol	ND	5.3	0.53	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.3	1.0	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.3	0.78	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.3	0.79	ug/l
83-32-9	Acenaphthene	ND	5.3	0.66	ug/I
208-96-8	Acenaphthylene	ND	5.3	0.67	ug/l
98-86-2	Acetophenone	ND	5.3	0.85	ug/l
120-12-7	Anthracene	ND	5.3	0.84	ug/l
1912-24-9	Atrazine	ND	5.3	1.1	ug/l
100-52-7	Benzaldehyde	ND	26	5.3	ug/l
56-55-3	Benzo(a)anthracene	ND	5.3	0.80	ug/l
50-32-8	Benzo(a) pyrene	ND	5.3	0.83	ug/l
205-99-2	Benzo(b)fluoranthene	ND	5.3	0.82	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	5.3	0.87	ug/l
207-08-9	Benzo(k)fluoranthene	ND	5.3	0.90	ug/l
92-52-4	1,1'-Biphenyl	ND	5.3	0.65	ug/l
101-55-3	4-Bromophenyl Phenyl Ether a	ND	5.3	0.89	ug/l
85-68-7	Butyl Benzyl Phthalate a	ND	5.3	1.1	ug/l
86-74-8	Carbazole	ND	5.3	0.63	ug/l
106-47-8	4-Chloroaniline ^a	ND	5.3	0.66	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: FB032017

Lab Sample ID: FA42237-2

Matrix: AQ - Field Blank Water Method: SW846 8270D SW846 3510C

Project: BMSMC, Humacao, PR Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	-
111-91-1	bis(2-Chloroethoxy)methane	ND	5.3	0.85	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.3	0.77	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.3	0.80	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.3	0.53	ug/l	
7005-72-3	4-Chlorophenyl Phenyl Ether	ND	5.3	0.56	ug/l	
218-01-9	Chrysene a	ND	5.3	0.89	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.3	0.85	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.63	ug/l	
91-94-1	3,3'-Dichlorobenzidine b	ND	5.3	0.68	ug/l	
84-66-2	Diethyl Phthalate	ND	5.3	1.1	ug/l	
131-11-3	Dimethyl Phthalate	ND	5.3	1.1	ug/l	
84-74-2	Di-n-butyl Phthalate a	ND	5.3	1.1	ug/l	
117-84-0	Di-n-octyl Phthalate	ND	5.3	1.1	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.3	0.86	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.3	0.75	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.3	1.1	ug/l	
206-44-0	Fluoranthene	ND	5.3	0.58	ug/I	
86-73-7	Fluorene	ND	5.3	0.74	ug/I	
118-74-1	Hexachlorobenzene ^a	ND	5.3	0.73	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.3	0.53	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.3	1.9	ug/l	
67-72-1	Hexachloroethane	ND	5.3	1.7	ug/I	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.3	0.75	ug/l	
78-59-1	Isophorone ^a	ND	5.3	0.82	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.3	0.63	ug/l	
88-74-4	2-Nitroaniline	ND	5.3	1.9	ug/l	
99-09-2	3-Nitroaniline ^a	ND	5.3	0.93	ug/l	
100-01-6	4-Nitroaniline	ND	5.3	1.2	ug/l	
98-95-3	Nitrobenzene	ND	5.3	0.98	ug/l	
621-64-7	N-Nitrosodi-n-propylamine	ND	5.3	0.70	ug/l	
86-30-6	N-Nitrosodiphenylamine a	ND	5.3	0.85	ug/l	
85-01-8	Phenanthrene	ND	5.3	0.91	ug/l	
129-00-0	Pyrene ^a	ND	5.3	0.72	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	5.3	0.53	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	38%		14-6	7%	
4165-62-2	Phenol-d5	24%		10-5	0%	
118-79-6	2,4,6-Tribromophenol	86%		33-1	18%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.2

Report of Analysis

Client Sample ID: FB032017

Lab Sample ID: FA42237-2

Matrix: Method:

AQ - Field Blank Water SW846 8270D SW846 3510C

Project:

BMSMC, Humacao, PR

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	83%		42-108%
321-60-8	2-Fluorobiphenyl	85%		40-106%
1718-51-0	Terphenyl-d14	93%		39-121%

(a) Associated BS recovery outside control limits.

(b) Associated CCV and BS outside control limits.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: MW-9

Lab Sample ID:

FA42237-3

Matrix:

Method:

AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: Date Received: 03/21/17

03/20/17

Percent Solids: n/a

Project:

BMSMC, Humacao, PR

File ID DF Analyzed By Prep Date 03/25/17 4D018.D 1 03/30/17 NG

Prep Batch OP64335

Q

Analytical Batch S4D36

Run #1 Run #2

Initial Volume

Final Volume

1020 ml

1.0 ml

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	9.8	2.5	ug/l
59-50-7	4-Chloro-3-methyl Phenol	ND	4.9	0.58	ug/l
95-57-8	2-Chlorophenol	ND	4.9	0.62	ug/l
120-83-2	2,4-Dichlorophenol	ND	4.9	0.82	ug/l
105-67-9	2,4-Dimethylphenol	ND	4.9	0.72	ug/l
51-28-5	2,4-Dinitrophenol	ND	25	4.9	ug/I
534-52-1	4,6-Dinitro-o-cresol a	ND	9.8	2.0	ug/l
95-48-7	2-Methylphenol	ND	4.9	0.55	ug/l
	3&4-Methylphenol	ND	4.9	0.96	ug/l
88-75-5	2-Nitrophenol	ND	4.9	0.84	ug/l
100-02-7	4-Nitrophenol	ND	25	4.9	ug/l
87-86-5	Pentachlorophenol a	ND	25	4.9	ug/l
108-95-2	Phenol	ND	4.9	0.49	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	4.9	0.95	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	4.9	0.73	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	4.9	0.74	ug/l
83-32-9	Acenaphthene	ND	4.9	0.61	ug/l
208-96-8	Acenaphthylene	ND	4.9	0.63	ug/l
98-86-2	Acetophenone	ND	4.9	0.79	ug/l
120-12-7	Anthracene	ND	4.9	0.78	ug/l
1912-24-9	Atrazine	ND	4.9	1.0	ug/l
100-52-7	Benzaldehyde	ND	25	4.9	ug/l
56-55-3	Benzo(a)anthracene	ND	4.9	0.75	ug/l
50-32-8	Benzo(a)pyrene	ND	4.9	0.77	ug/l
205-99-2	Benzo(b)fluoranthene	ND	4.9	0.76	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	4.9	0.81	ug/l
207-08-9	Benzo(k)fluoranthene	ND	4.9	0.84	ug/l
92-52-4	1,1'-Biphenyl	ND	4.9	0.61	ug/l
101-55-3	4-Bromophenyl Phenyl Ether a	ND	4.9	0.83	ug/l
85-68-7	Butyl Benzyl Phthalate ^a	ND	4.9	0.98	ug/l
86-74-8	Carbazole	ND	4.9	0.59	ug/l
106-47-8	4-Chloroaniline a	ND	4.9	0.62	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-9

Lab Sample ID: FA42237-3

Matrix:

AQ - Ground Water

Method: SW846 8270D SW846 3510C Project:

BMSMC, Humacao, PR

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
111-91-1	bis(2-Chloroethoxy)methane	ND	4.9	0.79	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	4.9	0.72	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	4.9	0.74	ug/l
91-58-7	2-Chloronaphthalene	ND	4.9	0.49	ug/l
7005-72-3	4-Chlorophenyl Phenyl Ether	ND	4.9	0.53	ug/l
218-01-9	Chrysene a	ND	4.9	0.83	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	4.9	0.79	ug/l
132-64-9	Dibenzofuran	ND	4.9	0.59	ug/l
91-94-1	3,3'-Dichlorobenzidine b	ND	4.9	0.63	ug/l
84-66-2	Diethyl Phthalate	ND	4.9	0.98	ug/l
131-11-3	Dimethyl Phthalate	ND	4.9	0.98	ug/l
84-74-2	Di-n-butyl Phthalate a	ND	4.9	0.98	ug/l
117-84-0	Di-n-octyl Phthalate	ND	4.9	0.98	ug/l
121-14-2	2,4-Dinitrotoluene	ND	4.9	0.80	ug/l
606-20-2	2,6-Dinitrotoluene	ND	4.9	0.70	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	4.9	0.98	ug/l
206-44-0	Fluoranthene	ND	4.9	0.54	ug/l
86-73-7	Fluorene	ND	4.9	0.69	ug/l
118-74-1	Hexachlorobenzene a	ND	4.9	0.68	ug/l
87-68-3	Hexachlorobutadiene	ND	4.9	0.49	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	4.9	1.8	ug/l
67-72-1	Hexachloroethane	ND	4.9	1.6	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	4.9	0.70	ug/l
78-59-1	Isophorone a	ND	4.9	0.76	ug/l
91-57-6	2-Methylnaphthalene	ND	4.9	0.59	ug/l
88-74-4	2-Nitroaniline	ND	4.9	1.8	ug/l
99-09-2	3-Nitroaniline ^a	ND	4.9	0.86	ug/l
100-01-6	4-Nitroaniline	ND	4.9	1.1	ug/l
98-95-3	Nitrobenzene	ND	4.9	0.91	ug/l
621-64-7	N-Nitrosodi-n-propylamine	ND	4.9	0.66	ug/l
86-30-6	N-Nitrosodiphenylamine a	ND	4.9	0.79	ug/l
85-01-8	Phenanthrene	ND	4.9	0.85	ug/l
129-00-0	Pyrene ^a	ND	4.9	0.67	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	4.9	0.49	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	37%		14-6	7%
4165-62-2	Phenol-d5	23%		10-5	0%
118-79-6	2,4,6-Tribromophenol	90%		33-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-9

Lab Sample ID: FA42237-3

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Humacao, PR

Date Sampled: Date Received: 03/21/17

03/20/17

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	85%		42-108%
321-60-8	2-Fluorobiphenyl	89%		40-106%
1718-51-0	Terphenyl-d14	97%		39-121%

- (a) Associated BS recovery outside control limits.
- (b) Associated CCV and BS outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: MW-11

Lab Sample ID: FA42237-4

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

BMSMC, Humacao, PR

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

File ID Prep Date Prep Batch **Analytical Batch** DF Analyzed By Run #1 4D019.D 1 03/30/17 NG 03/25/17 OP64335 S4D36

Run #2

Project:

Initial Volume Final Volume

Run #1

1010 ml

1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	9.9	2.5	ug/l	
59-50-7	4-Chloro-3-methyl Phenol	ND	5.0	0.59	ug/I	
95-57-8	2-Chlorophenol	ND	5.0	0.62	ug/I	
120-83-2	2,4-Dichlorophenol	ND	5.0	0.83	ug/I	
105-67-9	2,4-Dimethylphenol	ND	5.0	0.73	ug/l	
51-28-5	2,4-Dinitrophenol	ND	25	5.0	ug/I	
534-52-1	4,6-Dinitro-o-cresol ^a	ND	9.9	2.0	ug/l	
95-48-7	2-Methylphenol	ND	5.0	0.55	ug/l	
	3&4-Methylphenol	ND	5.0	0.97	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.84	ug/l	
100-02-7	4-Nitrophenol	ND	25	5.0	ug/l	
87-86-5	Pentachlorophenol a	ND	25	5.0	ug/l	
108-95-2	Phenol	ND	5.0	0.50	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	0.96	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	0.73	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.74	ug/l	
83-32-9	Acenaphthene	ND	5.0	0.62	ug/l	
208-96-8	Acenaphthylene	ND	5.0	0.63	ug/l	
98-86-2	Acetophenone	ND	5.0	0.80	ug/l	
120-12-7	Anthracene	ND	5.0	0.79	ug/l	
1912-24-9	Atrazine	ND	5.0	1.0	ug/l	
100-52-7	Benzaldehyde	ND	25	5.0	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.0	0.75	ug/l	
50-32-8	Вепго(а) ругепе	ND	5.0	0.78	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.77	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.81	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.85	ug/l	
92-52-4	1,1'-Biphenyl	ND	5.0	0.62	ug/l	
101-55-3	4-Bromophenyl Phenyl Ether a		5.0	0.84	ug/l	
85-68-7	Butyl Benzyl Phthalate a	ND	5.0	0.99	ug/l	
86-74-8	Carbazole	ND	5.0	0.59	ug/l	
106-47-8	4-Chloroaniline ^a	ND	5.0	0.62	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sample ID: MW-11

Lab Sample ID: FA42237-4

Matrix: Method:

Project:

AO - Ground Water

SW846 8270D SW846 3510C

BMSMC, Humacao, PR

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Q

ABN TCL Special List

				. —	1.
CAS No.	Compound	Result	RL	MDL	Units
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.80	ug/I
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.72	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.75	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	0.50	ug/l
7005-72-3	4-Chlorophenyl Phenyl Ether	ND	5.0	0.53	ug/l
218-01-9	Chrysene a	ND	5.0	0.84	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.80	ug/l
132-64-9	Dibenzofuran	ND	5.0	0.60	ug/l
91-94-1	3,3'-Dichlorobenzidine b	ND	5.0	0.64	ug/l
84-66-2	Diethyl Phthalate	ND	5.0	0.99	ug/l
131-11-3	Dimethyl Phthalate	ND	5.0	0.99	ug/l
84-74-2	Di-n-butyl Phthalate a	ND	5.0	0.99	ug/l
117-84-0	Di-n-octyl Phthalate	ND	5.0	0.99	ug/l
121-14-2	2,4-Dinitrotoluene	ND	5.0	0.80	ug/l
606-20-2	2,6-Dinitrotoluene	ND	5.0	0.71	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.0	0.99	ug/l
206-44-0	Fluoranthene	ND	5.0	0.55	ug/l
86-73-7	Fluorene	ND	5.0	0.69	ug/l
118-74-1	Hexachlorobenzene a	ND	5.0	0.69	ug/l
87-68-3	Hexachlorobutadiene	ND	5.0	0.50	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	5.0	1.8	ug/l
67-72-1	Hexachloroethane	ND	5.0	1.6	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.71	ug/l
78-59-1	Isophorone ^a	ND	5.0	0.77	ug/l
91-57-6	2-Methylnaphthalene	ND	5.0	0.59	ug/I
88-74-4	2-Nitroaniline	ND	5.0	1.8	ug/l
99-09-2	3-Nitroaniline ^a	ND	5.0	0.87	ug/l
100-01-6	4-Nitroaniline	ND	5.0	1.2	ug/l
98-95-3	Nitrobenzene	ND	5.0	0.92	ug/l
621-64-7	N-Nitrosodi-n-propylamine	ND	5.0	0.66	ug/l
86-30-6	N-Nitrosodiphenylamine a	ND	5.0	0.80	ug/l
85-01-8	Phenanthrene	ND	5.0	0.86	ug/l
129-00-0	Pyrene ^a	ND	5.0	0.68	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	5.0	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	31%		14-6	67%
4165-62-2	Phenol-d5	20%		10-5	50%
118-79-6	2,4,6-Tribromophenol	88%		33-1	118%

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: MW-11

Lab Sample ID:

FA42237-4

Matrix:

Project:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C

BMSMC, Humacao, PR

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	70%		42-108%
321-60-8	2-Fluorobiphenyl	76%		40-106%
1718-51-0	Terphenyl-d14	92%		39-121%

- (a) Associated BS recovery outside control limits.
- (b) Associated CCV and BS outside control limits.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report of Analysis

Page 1 of 3

Client Sample ID: S-30

Lab Sample ID: FA42237-5

Matrix: Method: AQ - Ground Water

1

SW846 8270D SW846 3510C

BMSMC, Humacao, PR

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

OP64335

Q

S4D36

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch**

03/30/17

NG

03/25/17

Run #1 Run #2

Project:

Final Volume Initial Volume

Run #1 1.0 ml 1040 ml

4D022.D

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	9.6	2.4	ug/l
59-50-7	4-Chloro-3-methyl Phenol	ND	4.8	0.57	ug/l
95-57-8	2-Chlorophenol	ND	4.8	0.61	ug/l
120-83-2	2,4-Dichlorophenol	ND	4.8	0.80	ug/l
105-67-9	2,4-Dimethylphenol	ND	4.8	0.71	ug/l
51-28-5	2,4-Dinitrophenol	ND	24	4.8	ug/l
534-52-1	4.6-Dinitro-o-cresol a	ND	9.6	1.9	ug/l
95-48-7	2-Methylphenol	ND	4.8	0.54	ug/l
	3&4-Methylphenol	ND	4.8	0.94	ug/l
88-75-5	2-Nitrophenol	ND	4.8	0.82	ug/l
100-02-7	4-Nitrophenol	ND	24	4.8	ug/l
87-86-5	Pentachlorophenol a	ND	24	4.8	ug/l
108-95-2	Phenol	ND	4.8	0.48	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	4.8	0.93	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	4.8	0.71	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	4.8	0.72	ug/l
83-32-9	Acenaphthene	ND	4.8	0.60	ug/l
208-96-8	Acenaphthylene	ND	4.8	0.61	ug/l
98-86-2	Acetophenone	ND	4.8	0.78	ug/l
120-12-7	Anthracene	ND	4.8	0.77	ug/l
1912-24-9	Atrazine	ND	4.8	0.98	ug/l
100-52-7	Benzaldehyde	ND	24	4.8	ug/l
56-55-3	Benzo(a)anthracene	ND	4.8	0.73	ug/l
50-32-8	Benzo(a) pyrene	ND	4.8	0.75	ug/l
205-99-2	Benzo(b)fluoranthene	ND	4.8	0.75	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	4.8	0.79	ug/l
207-08-9	Benzo(k)fluoranthene	ND	4.8	0.82	ug/l
92-52-4	1,1'-Biphenyl	ND	4.8	0.60	ug/l
101-55-3	4-Bromophenyl Phenyl Ether a	ND	4.8	0.81	ug/l
85-68-7	Butyl Benzyl Phthalate a	ND	4.8	0.96	ug/l
86-74-8	Carbazole	ND	4.8	0.58	ug/l
106-47-8	4-Chloroaniline ^a	ND	4.8	0.61	ug/l

ifael Mili Mendez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-30

Lab Sample ID: FA42237-5 Matrix:

AQ - Ground Water Method: SW846 8270D SW846 3510C

Project: BMSMC, Humacao, PR Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
111-91-1	bis(2-Chloroethoxy)methane	ND	4.8	0.78	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	4.8	0.70	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	4.8	0.73	ug/l
91-58-7	2-Chloronaphthalene	ND	4.8	0.48	ug/l
7005-72-3	4-Chlorophenyl Phenyl Ether	ND	4.8	0.52	ug/l
218-01-9	Chrysene ^a	ND	4.8	0.82	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	4.8	0.77	ug/l
132-64-9	Dibenzofuran	ND	4.8	0.58	ug/l
91-94-1	3,3'-Dichlorobenzidine ^b	ND	4.8	0.62	ug/l
84-66-2	Diethyl Phthalate	ND	4.8	0.96	ug/l
131-11-3	Dimethyl Phthalate	ND	4.8	0.96	ug/l
84-74-2	Di-n-butyl Phthalate a	ND	4.8	0.96	ug/l
117-84-0	Di-n-octyl Phthalate	ND	4.8	0.96	ug/l
121-14-2	2,4-Dinitrotoluene	ND	4.8	0.78	ug/l
606-20-2	2,6-Dinitrotoluene	ND	4.8	0.69	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	4.8	0.96	ug/l
206-44-0	Fluoranthene	ND	4.8	0.53	ug/l
86-73-7	Fluorene	ND	4.8	0.67	ug/l
118-74-1	Hexachlorobenzene a	ND	4.8	0.67	ug/l
87-68-3	Hexachlorobutadiene	ND	4.8	0.48	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	4.8	1.7	ug/l
67-72-1	Hexachloroethane	ND	4.8	1.6	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	4.8	0.69	ug/l
78-59-1	Isophorone a	ND	4.8	0.75	ug/l
91-57-6	2-Methylnaphthalene	ND	4.8	0.58	ug/l
88-74-4	2-Nitroaniline	ND	4.8	1.7	ug/l
99-09-2	3-Nitroaniline ^a	ND	4.8	0.85	ug/l
100-01-6	4-Nitroaniline	ND	4.8	1.1	ug/l
98-95-3	Nitrobenzene	ND	4.8	0.90	ug/l
621-64-7	N-Nitrosodi-n-propylamine	ND	4.8	0.64	ug/l
86-30-6	N-Nitrosodiphenylamine a	ND	4.8	0.78	ug/l
85-01-8	Phenanthrene	ND	4.8	0.83	ug/l
129-00-0	Pyrene ^a	ND	4.8	0.66	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	4.8	0.48	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	34%		14-6	7%
4165-62-2	Phenol-d5	22%		10-5	i 0 %
118-79-6	2,4,6-Tribromophenol	90%		33-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Matrix:

Method:

Project:

Page 3 of 3

Report of Analysis

Client Sample ID: S-30

Lab Sample ID: FA42237-5

AQ - Ground Water

SW846 8270D SW846 3510C

Percent Solids: n/a

Date Sampled: 03/20/17 Date Received: 03/21/17

BMSMC, Humacao, PR

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	80%		42-108%
321-60-8	2-Fluorobiphenyl	83%		40-106%
1718-51-0	Terphenyl-d14	69%		39-121%

(a) Associated BS recovery outside control limits.

(b) Associated CCV and BS outside control limits.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

NG

Page 1 of 3

Client Sample ID: MW-19

Lab Sample ID: FA42237-6

File ID

4D023.D

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Analyzed

03/30/17

Date Sampled: 03/20/17 Date Received: 03/21/17

Prep Date

03/25/17

Percent Solids: n/a

Project:

BMSMC, Humacao, PR

DF

1

Analytical Batch Prep Batch OP64335 S4D36

Run #1 Run #2

> Final Volume Initial Volume

Run #1

1010 ml 1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	9.9	2.5	ug/l
59-50-7	4-Chloro-3-methyl Phenol	ND	5.0	0.59	ug/l
95-57-8	2-Chlorophenol	ND	5.0	0.62	ug/I
120-83-2	2,4-Dichlorophenol	ND	5.0	0.83	ug/l
105-67-9	2,4-Dimethylphenol	7.6	5.0	0.73	ug/l
51-28-5	2,4-Dinitrophenol	ND	25	5.0	ug/l
534-52-1	4,6-Dinitro-o-cresol a	ND	9.9	2.0	ug/l
95-48-7	2-Methylphenol	ND	5.0	0.55	ug/l
	3&4-Methylphenol	ND	5.0	0.97	ug/l
88-75-5	2-Nitrophenol	ND	5.0	0.84	ug/l
100-02-7	4-Nitrophenol	ND	25	5.0	ug/l
87-86-5	Pentachlorophenol a	ND	25	5.0	ug/l
108-95-2	Phenol	ND	5.0	0.50	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	0.96	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	0.73	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.74	ug/l
83-32-9	Acenaphthene	ND	5.0	0.62	ug/l
208-96-8	Acenaphthylene	ND	5.0	0.63	ug/l
98-86-2	Acetophenone	3.1	5.0	0.80	ug/l
120-12-7	Anthracene	ND	5.0	0.79	ug/l
1912-24-9	Atrazine	ND	5.0	1.0	ug/l
100-52-7	Benzaldehyde	ND	25	5.0	ug/I
56-55-3	Benzo(a)anthracene	ND	5.0	0.75	ug/i
50-32-8	Вепzо(а) ругепе	ND	5.0	0.78	ug/I
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.77	ug/I
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.81	ug/I
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.85	ug/l
92-52-4	1,1'-Biphenyl	ND	5.0	0.62	ug/l
101-55-3	4-Bromophenyl Phenyl Ether a	ND	5.0	0.84	ug/l
85-68-7	Butyl Benzyl Phthalate a	ND	5.0	0.99	ug/l
86-74-8	Carbazole	ND	5.0	0.59	ug/l
106-47-8	4-Chloroaniline ^a	ND	5.0	0.62	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

J

Report of Analysis

Client Sample ID: MW-19

Lab Sample ID: FA42237-6

Matrix: Method: Project: AQ - Ground Water

SW846 8270D SW846 3510C

BMSMC, Humacao, PR

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Q

J

J

ABN TCL Special List

	-				
CAS No.	Compound	Result	RL	MDL	Units
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.80	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.72	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.75	ug/l
91-58-7	2-Chloronaphthalene	ND	5.0	0.50	ug/l
7005-72-3	4-Chlorophenyl Phenyl Ether	ND	5.0	0.53	ug/l
218-01-9	Chrysene ^a	ND	5.0	0.84	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.80	ug/l
132-64-9	Dibenzofuran	ND	5.0	0.60	ug/l
91-94-1	3,3'-Dichlorobenzidine b	ND	5.0	0.64	ug/l
84-66-2	Diethyl Phthalate	ND	5.0	0.99	ug/l
131-11-3	Dimethyl Phthalate	ND	5.0	0.99	ug/l
84-74-2	Di-n-butyl Phthalate a	ND	5.0	0.99	ug/l
117-84-0	Di-n-octyl Phthalate	ND	5.0	0.99	ug/l
121-14-2	2,4-Dinitrotoluene	ND	5.0	0.80	ug/l
606-20-2	2,6-Dinitrotoluene	ND	5.0	0.71	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.0	0.99	ug/l
206-44-0	Fluoranthene	3.3	5.0	0.55	ug/l
86-73-7	Fluorene	ND	5.0	0.69	ug/l
118-74-1	Hexachlorobenzene a	ND	5.0	0.69	ug/l
87-68-3	Hexachlorobutadiene	ND	5.0	0.50	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	5.0	1.8	ug/l
67-72-1	Hexachloroethane	ND	5.0	1.6	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.71	ug/l
78-59-1	Isophorone a	ND	5.0	0.77	ug/l
91-57-6	2-Methylnaphthalene	0.88	5.0	0.59	ug/l
88-74-4	2-Nitroaniline	ND	5.0	1.8	ug/l
99-09-2	3-Nitroaniline ^a	ND	5.0	0.87	ug/l
100-01-6	4-Nitroaniline	ND	5.0	1.2	ug/l
98-95-3	Nitrobenzene	ND	5.0	0.92	ug/l
621-64-7	N-Nitrosodi-n-propylamine	ND	5.0	0.66	ug/l
86-30-6	N-Nitrosodiphenylamine a	ND	5.0	0.80	ug/l
85-01-8	Phenanthrene	ND	5.0	0.86	ug/l
129-00-0	Pyrene a	2.6	5.0	0.68	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	5.0	0.50	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	34%		14-6	
4165-62-2	Phenol-d5	22%		10-5	0%
118-79-6	2,4,6-Tribromophenol	90%		33-1	18%

ND = Not detected RL = Reporting Limit MDL = Method Detection Limit

 $\lim_{t \to t} \frac{1}{t} = 1$

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 3 of 3

Client Sample ID: MW-19

Lab Sample ID: FA42237-6 Matrix:

AO - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Humacao, PR

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	79%		42-108%
321-60-8	2-Fluorobiphenyl	82%		40-106%
1718-51-0	Terphenyl-d14	70%	1	39-121%

(a) Associated BS recovery outside control limits.

(b) Associated CCV and BS outside control limits.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Job Number: FA42237

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Humacao, PR

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP64335-MS	4D020.D	1	03/30/17	NG	03/25/17	OP64335	S4D36
OP64335-MSD	4D021.D	1	03/30/17	NG	03/25/17	OP64335	S4D36
FA42237-4	4D019.D	1	03/30/17	NG	03/25/17	OP64335	S4D36

The QC reported here applies to the following samples:

Method: SW846 8270D

FA42237-1, FA42237-2, FA42237-3, FA42237-4, FA42237-5, FA42237-6

		FA42237-4	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
105-60-2	Caprolactam	ND	98	37.7	38	98	25.0	26	41*	11-68/39
59-50-7	4-Chloro-3-methyl Phenol	ND	98	90.1	92	98	80.6	82	11	54-103/23
95-57-8	2-Chlorophenol	ND	98	87.2	89	98	76.1	78	14	52-98/25
120-83-2	2,4-Dichlorophenol	ND	98	92.6	94	98	80.8	82	14	53-103/26
120-63-2	2,4-Dimethylphenol	ND	98	84.3	86	98	77.6	79	8	43-90/27
51-28-5	2,4-Dinitrophenol	ND ND	196	178	91	196	161	82	10	44-112/25
51-26-5 534-52-1	4,6-Dinitro-o-cresol	ND	196	237	121	196	212	108	11	66-121/23
	•	ND ND	98	75.4	77	98	69.9	71	8	43-90/28
95-48-7	2-Methylphenol 3&4-Methylphenol	ND ND	98 196	75.4 149	76	196	132	67	12	36-88/28
99 7E E		ND	98	93.9	96	98	80.3	82	16	53-102/29
88-75-5	2-Nitrophenol	ND ND	96 196	93.9 128	65*	196	106	54	19	18-62/33
100-02-7	4-Nitrophenol		196			196	195	99	11	61-115/26
87-86-5	Pentachlorophenol	ND		218	111			44	19	19-56/35
108-95-2	Phenol	ND	98	52.6	54	98 98	43.3 85.4	87	11	62-110/22
58-90-2	2,3,4,6-Tetrachlorophenol	ND	98	95.0	97			- Production of the Control of the C		
95-95-4	2,4,5-Trichlorophenol	ND	98	102	104	98	92.3	94	10	62-109/22
88-06-2	2,4,6-Trichlorophenol	ND	98	101	103	98	89.6	91	12	59-107/23
83-32-9	Acenaphthene	ND	98	99.8	102	98	88.1	90	12	61-107/22
208-96-8	Acenaphthylene	ND	98	99.9	102	98	88.3	90	12	60-104/22
98-86-2	Acetophenone	ND	98	84.7	86	98	76.0	78	11	53-106/27
120-12-7	Anthracene	ND	98	98.6	101	98	89.4	91	10	65-108/20
1912-24-9	Atrazine	ND	98	90.7	93	98	82.8	84	9	62-114/24
100-52-7	Benzaldehyde	ND	98	72.5	74	98	67.2	69	8	36-129/29
56-55-3	Benzo(a)anthracene	ND	98	98.7	101	98	88.1	90	11	66-111/22
50-32-8	Benzo(a)pyrene	ND	98	91.9	94	98	83.2	85	10	62-107/23
205-99-2	Benzo(b)fluoranthene	ND	98	92.8	95	98	81.5	83	13	65-114/23
191-24-2	Benzo(g,h,i)perylene	ND	98	107	109	98	98.2	100	9	66-116/23
207-08-9	Benzo(k)fluoranthene	ND	98	92.7	95	98	83.4	85	11	65-114/24
92-52-4	1,1'-Biphenyl	ND	98	92.2	94	98	81.8	83	12	57-104/23
101-55-3	4-Bromophenyl Phenyl Ether	ND	98	105	107	98	90.7	93	15	65-109/23
85-68-7	Butyl Benzyl Phthalate	ND	98	103	105	98	92.8	95	10	65-112/24
86-74-8	Carbazole	ND	98	98.7	101	98	89.4	91	10	59-113/21
106-47-8	4-Chloroaniline	ND	98	158	161*	98	131	134*	19	49-105/27
111-91-1	bis(2-Chloroethoxy)methane	ND	98	89.1	91	98	78.5	80	13	51-102/28
111-44-4	bis(2-Chloroethyl)ether	ND	98	91.4	93	98	80.1	-82	_13	53-100/27
108-60-1	bis(2-Chloroisopropyl)ether	ND	98	97.8	100	98	85.6	87		45-106/26
91-58-7	2-Chloronaphthalene	ND	98	98.2	100	98	85	87		57-103/23
	•						13			\

^{* =} Outside of Control Limits.

itael Infante Méndez IC # 1888

Page 2 of 3

Matrix Spike/Matrix Spike Duplicate Summary Job Number: FA42237

Account: AMANYWP Anderson, Mulholland & Associates

BMSMC, Humacao, PR Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP64335-MS	4D020.D	1	03/30/17	NG	03/25/17	OP64335	S4D36
OP64335-MSD	4D021.D	1	03/30/17	NG	03/25/17	OP64335	S4D36
FA42237-4	4D019.D	1	03/30/17	NG	03/25/17	OP64335	S4D36

The QC reported here applies to the following samples:

Method: SW846 8270D

FA42237-1, FA42237-2, FA42237-3, FA42237-4, FA42237-5, FA42237-6

		FA42237-4	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
7005-72-3	4-Chlorophenyl Phenyl Ether	ND	98	96.2	98	98	86.7	88	10	62-105/20
218-01-9	Chrysene	ND	98	104	106	98	92.8	95	11	66-111/22
53-70-3	Dibenzo(a,h)anthracene	ND	98	89.8	92	98	80.5	82	11	66-119/24
132-64-9	Dibenzofuran	ND	98	97.0	99	98	86.8	89	11	61-106/21
91-94-1	3,3'-Dichlorobenzidine	ND	98	154	157*	98	126	129*	20	46-117/29
84-66-2	Diethyl Phthalate	ND	98	94.2	96	98	86.3	88	9	64-108/21
131-11-3	Dimethyl Phthalate	ND	98	95. 9	98	98	87.8	90	9	63-106/22
84-74-2	Di-n-butyl Phthalate	ND	98	98.0	100	98	88.7	90	10	65-107/21
117-84-0	Di-n-octyl Phthalate	ND	98	105	107	98	95.8	98	9	62-118/24
121-14-2	2,4-Dinitrotoluene	ND	98	93.9	96	98	88.8	91	6	61-110/21
606-20-2	2,6-Dinitrotoluene	ND	98	95.0	97	98	85.4	87	11	63-108/21
117-81-7	bis(2-Ethylhexyl)phthalate	ND	98	106	108	98	95.3	97	11	61-117/23
206-44-0	Fluoranthene	ND	98	93.4	95	98	84.6	86	10	63-106/21
86-73-7	Fluorene	ND	98	96.1	98	98	86.4	88	11	62-108/20
118-74-1	Hexachlorobenzene	ND	98	102	104	98	91.5	93	11	63-108/22
87-68-3	Hexachlorobutadiene	ND	98	92.2	94	98	77.9	79	17	42-102/28
77-47-4	Hexachlorocyclopentadiene	ND	98	104	106*	98	88.7	90	16	39-102/29
67-72-1	Hexachloroethane	ND	98	87.5	89	98	76.5	78	13	42-100/29
193-39-5	Indeno(1,2,3-cd)pyrene	ND	98	106	108	98	93.9	96	12	64-119/24
78-59-1	Isophorone	ND	98	98.1	100*	98	88.3	90*	11	43-87/25
91-57-6	2-Methylnaphthalene	ND	98	87.2	89	98	75.3	77	15	51-102/26
88-74-4	2-Nitroaniline	ND	98	108	110	98	97.5	99	10	54-128/24
99-09-2	3-Nitroaniline	ND	98	136	139*	98	128	131*	6	56-106/27
100-01-6	4-Nitroaniline	ND	98	90.8	93	98	80.3	82	12	55-120/24
98-95-3	Nitrobenzene	ND	98	98.4	100	98	86.1	88	13	50-104/28
621-64-7	N-Nitrosodi-n-propylamine	ND	98	85.6	87	98	78.4	80	9	52-104/25
86-30-6	N-Nitrosodiphenylamine	ND	98	103	105	98	89.5	91	14	64-108/23
85-01-8	Phenanthrene	ND	98	101	103	98	89.4	91	12	66-110/21
129-00-0	Pyrene	ND	98	107	109	98	97.7	100	9	64-113/23
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	98	85.4	87	98	73.4	75	other.	47-111/27
								ALA	OCENDO	(AL
CAS No.	Surrogate Recoveries	MS	MSD	FA	42237-4	Limits	-	-87 E	tuel India	
000 00 1		many + a	0001	0.0		14.0007		523	Méndez (# 100	
367-12-4	2-Fluorophenol	72%* a	60%	319		14-67%		1 ()		
4165-62-2	Phenol-d5	53%* a	45%	209	%	10-50%		12/1	OLICEN	
								1	OLICEN	CIT

^{* =} Outside of Control Limits.

Page 3 of 3

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA42237

Account: AMAN

: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Humacao, PR

Sample OP64335-MS	File ID 4D020.D	DF 1	Analyzed 03/30/17	By NG	Prep Date 03/25/17	Prep Batch OP64335	Analytical Batch S4D36
OP64335-MSD FA42237-4	4D021.D 4D019.D	1 1	03/30/17 03/30/17	NG NG	03/25/17 03/25/17	OP64335 OP64335	S4D36 S4D36

The QC reported here applies to the following samples:

Method: SW846 8270D

FA42237-1, FA42237-2, FA42237-3, FA42237-4, FA42237-5, FA42237-6

CAS No.	Surrogate Recoveries	MS	MSD	FA42237-4	Limits
118-79-6	2,4,6-Tribromophenol	104%	90%	88%	33-118%
4165-60-0	Nitrobenzene-d5	99%	85%	70%	42-108%
321-60-8	2-Fluorobiphenyl	104%	90%	76%	40-106%
1718-51-0	Terphenyl-d14	107%	95%	92%	39-121%

(a) Outside control limits.

^{* =} Outside of Control Limits.

Report of Analysis

Вy

FS

NJ

Page 1 of 1

Client Sample ID: EB032017

File ID

W098471.D

U060649.D

Lab Sample ID:

FA42237-1

AQ - Equipment Blank

03/25/17

Date Sampled: 03/20/17

SU2657

Matrix: Method:

SW846 8270D BY SIM SW846 3510C

Analyzed

03/31/17

03/29/17

Date Received: 03/21/17

Project:

Run #1 a

Run #2

BMSMC, Humacao, PR

DF

1

1

Percent Solids: n/a

OP64336

Analytical Batch Prep Date Prep Batch 03/25/17 OP64336 SW4371

	Initial Volume	Final Volume
Run #1	1020 ml	1.0 ml
Run #2	1020 ml	1.0 ml

BN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
56-55-3	Benzo(a)anthracene	ND	0.20	0.039	ug/l	
50-32-8	Вепло(а)ругепе	ND	0.20	0.039	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.20	0.039	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.20	0.039	ug/l	
218-01-9	Chrysene	ND	0.20	0.039	ug/I	
53-70-3	Dibenzo(a,h)anthracene	ND	0.20	0.039	ug/I	
123-91-1	1,4-Dioxane	ND b	0.29	0.15	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.20	0.039	ug/i	
90-12-0	1-Methylnaphthalene	ND	0.98	0.39	ug/I	
91-57-6	2-Methylnaphthalene	ND	0.98	0.39	ug/l	
91-20-3	Naphthalene	ND	0.98	0.39	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	71%	79% a	42-1	.08%	
321-60-8	2-Fluorobiphenyl	67%	66% a	40-1	06%	
1718-51-0	Terphenyl-d14	52%	70% a	39-1	21%	

- (a) Surrogate recoveries corrected for actual spike amount.
- (b) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: FB032017

Lab Sample ID:

FA42237-2

Matrix:

AQ - Field Blank Water

SW846 8270D BY SIM SW846 3510C

Date Sampled: 03/20/17 Date Received: 03/21/17

Method: Project:

BMSMC, Humacao, PR

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1 a	W098472.D	1	03/31/17	FS	03/25/17	OP64336	SW4371
Run #2	U060650.D	1	03/29/17	NJ	03/25/17	OP64336	SU2657

	Initial Volume	Final Volume		
F			118	
Run #1	950 ml	1.0 ml		
	300 IIII	1.0 1111		
Run #2	950 ml	1.0 ml		
Kun #2	200 IIII	1.0 1111		

BN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
56-55-3	Benzo(a)anthracene	ND	0.21	0.042	ug/l	
50-32-8	Вепхо(а) ругепе	ND	0.21	0.042	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.21	0.042	ug/I	
207-08-9	Benzo(k)fluoranthene	ND	0.21	0.042	ug/l	
218-01-9	Chrysene	ND	0.21	0.042	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.21	0.042	ug/l	
123-91-1	1,4-Dioxane	ND b	0.32	0.16	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.21	0.042	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.42	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.42	ug/l	
91-20-3	Naphthalene	ND	1.1	0.42	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	69%	81% a	42-1	08%	
321-60-8	2-Fluorobiphenyl	76%	68% a	40-1	06%	
1718-51-0	Terphenyl-d14	59%	76% a	39-1	21%	

(a) Surrogate recoveries corrected for actual spike amount.

(b) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-9

Lab Sample ID:

FA42237-3

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

Date Received: 03/21/17 Percent Solids: n/a

Date Sampled: 03/20/17

BMSMC, Humacao, PR

Analytical Batch File ID DF Analyzed By Prep Date Prep Batch Run #1 a OP64336 FS SW4371 W098473.D 1 03/31/17 03/25/17 SU2657 Run #2 U060651.D 1 03/29/17 NJ 03/25/17 **OP64336**

	Initial Volume	Final Volume
Run #1	1020 ml	1.0 ml
Run #2	1020 ml	1.0 ml

BN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
56-55-3	Benzo(a)anthracene	ND	0.20	0.039	ug/l	
50-32-8	Benzo(a) pyrene	ND	0.20	0.039	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.20	0.039	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.20	0.039	ug/l	
218-01-9	Chrysene	ND	0.20	0.039	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.20	0.039	ug/l	
123-91-1	1.4-Dioxane	ND b	0.29	0.15	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.20	0.039	ug/l	
90-12-0	1-Methylnaphthalene	ND	0.98	0.39	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.98	0.39	ug/l	
91-20-3	Naphthalene	ND	0.98	0.39	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
4165-60-0	Nitrobenzene-d5	74%	86% a	42-1	08%	
321-60-8	2-Fluorobiphenyl	78%	73% a	40-1	06%	
1718-51-0	Terphenyl-d14	59%	78% a	39-1	21%	

(a) Surrogate recoveries corrected for actual spike amount.

(b) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-11

Lab Sample ID:

FA42237-4

AQ - Ground Water

Date Sampled: 03/20/17 Date Received: 03/21/17

Method: SW846 8270D BY SIM SW846 3510C Percent Solids: n/a

Project:

Matrix:

BMSMC, Humacao, PR

File ID DF Prep Date Prep Batch **Analytical Batch** Analyzed By

Run #1 a FS SW4371 W098474.D 1 03/31/17 03/25/17 OP64336 Run #2 U060660.D 25 03/29/17 03/25/17 OP64336 SU2657 NJ

Initial Volume Final Volume Run #1 1010 ml 1.0 ml

1.0 ml Run #2 1010 ml

BN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
56-55-3	Benzo(a)anthracene	ND	0.20	0.040	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.20	0.040	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.20	0.040	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.20	0.040	ug/l	
218-01-9	Chrysene	ND	0.20	0.040	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.20	0.040	ug/l	
123-91-1	1,4-Dioxane	188 b	7.4	3.7	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.20	0.040	ug/l	
90-12-0	1-Methylnaphthalene	ND	0.99	0.40	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.99	0.40	ug/l	
91-20-3	Naphthalene	ND	0.99	0.40	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
4165-60-0	Nitrobenzene-d5	72%	0% c	42-1	08%	
321-60-8	2-Fluorobiphenyl	67%	0% c	40-1	06%	
1718-51-0	Terphenyl-d14	60%	0% c		21%	

- (a) Surrogate recoveries corrected for actual spike amount.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-30

Lab Sample ID:

FA42237-5

AQ - Ground Water

Date Sampled: 03/20/17

Matrix: Method:

SW846 8270D BY SIM SW846 3510C

Date Received: 03/21/17 Percent Solids: n/a

Project:

BMSMC, Humacao, PR

DF

Analytical Batch Prep Date Prep Batch

Run #1 a W098477.D 1 03/31/17 FS 03/25/17 OP64336 SW4371 OP64336 SU2657 Run #2 U060663.D 200 03/29/17 03/25/17 NJ

By

Analyzed

Initial Volume Final Volume 1.0 ml

Run #1 1040 ml Run #2 1040 ml 1.0 ml

File ID

BN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
56-55-3	Benzo(a)anthracene	ND	0.19	0.038	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.19	0.038	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.19	0.038	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.19	0.038	ug/l	
218-01-9	Chrysene	ND	0.19	0.038	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.19	0.038	ug/l	
123-91-1	1,4-Dioxane	1300 b	58	29	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.19	0.038	ug/l	
90-12-0	1-Methylnaphthalene	ND	0.96	0.38	ug/l	
91-57-6	2-Methylnaphthalene	ND	0.96	0.38	ug/I	
91-20-3	Naphthalene	ND	0.96	0.38	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
4165-60-0	Nitrobenzene-d5	60%	0% с	42-1	08%	
321-60-8	2-Fluorobiphenyl	72%	0% c	40-1	06%	
1718-51-0	Terphenyl-d14	46%	0% c	39-1	21%	

- (a) Surrogate recoveries corrected for actual spike amount.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

SGS Accutest

Report of Analysis

Client Sample ID: MW-19

Lab Sample ID: FA42237-6

Matrix: Method: AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

Date Sampled:

03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Project:

BMSMC, Humacao, PR

Prep Batch **Analytical Batch** File ID DF Analyzed Prep Date By

FS OP64336 SW4371 Run #1 a W098478.D 1 03/31/17 03/25/17 03/29/17 03/25/17 **OP64336** SU2657 Run #2 U060659.D 1 NJ

Final Volume Initial Volume

Run #1 1010 ml 1.0 ml Run #2 1010 ml 1.0 ml

BN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
56-55-3	Benzo(a)anthracene	0.40	0.20	0.040	ug/l	
50-32-8	Benzo(a) pyrene	ND	0.20	0.040	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.20	0.040	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.20	0.040	ug/l	
218-01-9	Chrysene	ND	0.20	0.040	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.20	0.040	ug/l	
123-91-1	1,4-Dioxane	0.86 b	0.30	0.15	ug/I	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.20	0.040	ug/l	
90-12-0	1-Methylnaphthalene	1.1	0.99	0.40	ug/l	
91-57-6	2-Methylnaphthalene	0.84	0.99	0.40	ug/l	J
91-20-3	Naphthalene	1.2	0.99	0.40	ug/l	•
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	66%	77% a	42-1	08%	
321-60-8	2-Fluorobiphenyl	75%	65% a	40-1	06%	
1718-51-0	Terphenyl-d14	46%	59% a	39-1	21%	1400

- (a) Surrogate recoveries corrected for actual spike amount.
- (b) Result is from Run# 2

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary Job Number: FA42237

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Humacao, PR

Sample OP64336-MS ^a	File ID U060661.D	DF 25	Analyzed 03/29/17	By NI	Prep Date 03/25/17	Prep Batch OP64336	Analytical Batch SU2657
OP64336-MSD a	U060662.D	25 25	03/29/17	NJ	03/25/17	OP64336	SU2657
FA42237-4	U060660.D	25	03/29/17	NJ	03/25/17	OP64336	SU2657

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

FA42237-1, FA42237-2, FA42237-3, FA42237-4, FA42237-5, FA42237-6

CAS No.	Compound	FA42237-4 ug/l Q	Spike ug/l			Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
123-91-1	1,4-Dioxane	188	38.4	412 1	l 165* ^b	38.4	459	1409* ¹	11	15-69/31
CAS No.	Surrogate Recoveries	MS	MSD	FA422	237-4	Limits				
4165-60-0	Nitrobenzene-d5	0%* c	0%* c	0%* c	MIN	42-108%	5			
321-60-8	2-Fluorobiphenyl	0%* c	0%* c	0%* c		40-106%	,			
1718-51-0	Terphenyl-d14	0%* c	0%* c	0%* c		39-121%	b			

(a) Spike recoveries corrected for actual spike amount.

(b) Outside control limits due to high level in sample relative to spike amount.

(c) Outside control limits due to dilution.

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA42237

AMANYWP Anderson, Mulholland & Associates Account:

Project: BMSMC, Humacao, PR

|--|

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

Page 1 of 1

FA42237-1, FA42237-2, FA42237-3, FA42237-4, FA42237-5, FA42237-6

		FA42237-4	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
56-55-3	Benzo(a)anthracene	ND	9.62	7.0	73	9.62	8.3	86	17	65-106/22
50-32-8	Benzo(a)pyrene	ND	9.62	7.2	75	9.62	8.3	86	14	58-111/23
205-99-2	Benzo(b)fluoranthene	ND	9.62	7.4	77	9.62	8.7	90	16	59-113/24
207-08-9	Benzo(k)fluoranthene	ND	9.62	7.6	79	9.62	8.4	87	10	58-110/23
218-01-9	Chrysene	ND	9.62	7.3	76	9.62	8.5	88	15	66-107/22
53-70-3	Dibenzo(a,h)anthracene	ND	9.62	6.6	69	9.62	7.8	81	17	40-113/25
193-39-5	Indeno(1,2,3-cd)pyrene	ND	9.62	7.1	74	9.62	8.4	87	17	44-112/25
90-12-0	1-Methylnaphthalene	ND	19.2	12.0	62	19.2	13.2	69	10	54-105/26
91-57-6	2-Methylnaphthalene	ND	19.2	11.4	59	19.2	13.0	68	13	53-105/26
91-20-3	Naphthalene	ND	19.2	11.7	61	19.2	13.0	68	11	56-105/27
CAS No.	Surrogate Recoveries	MS	MSD	FA	442237-4	Limits				
118-79-6	2,4,6-Tribromophenol	81%	99%			33-118	%			
4165-60-0	Nitrobenzene-d5	68%	77%	72	1%	42-108				
321-60-8	2-Fluorobiphenyl	69%	78%	67	%	40-106				
1718-51-0	Terphenyl-d14	65%	73%	60	1%	39-121	%			

⁽a) Surrogate recoveries corrected for actual spike amount.

^{* =} Outside of Control Limits.

Page 1 of 1

SGS Accutest

Report of Analysis

Client Sample ID: EB032017

Lab Sample ID: FA42237-1

Matrix: Method: AQ - Equipment Blank

Project:

MADEP VPH REV 1.1 BMSMC, Humacao, PR Date Sampled: 03/20/17

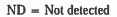
Date Received: 03/21/17

Percent Solids: n/a

Prep Batch **Analytical Batch** File ID DF Analyzed By Prep Date AJC **GUV4186** Run #1 UV078908.D 1 03/26/17 n/a n/a

Run #2

Purge Volume


Run #1 5.0 ml

Run #2

MADEP VPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.)	ND	100	35	ug/l	
	C9- C12 Aliphatics (Unadj.)	ND	100	35	ug/l	
	C9- C10 Aromatics (Unadj.)	ND	100	35	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
460-00-4	BFB	91%		70-1	130%	
460-00-4	BFB	91%		70-1	30%	2
					V	1.8

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

AJC

Prep Date

n/a

Page 1 of 1

Client Sample ID: FB032017

Lab Sample ID: FA42237-2

File ID

Matrix: Method: AQ - Field Blank Water

DF

1

Project:

MADEP VPH REV 1.1 BMSMC, Humacao, PR Date Sampled: 03/20/17 Date Received: 03/21/17

n/a

Percent Solids: n/a

Prep Batch

Analytical Batch GUV4186

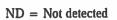
Run #1 Run #2

Purge Volume

UV078909.D

Run #1 5.0 ml

Run #2


MADEP VPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.)	ND ND ND	100 100 100	35 35 35	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	•	
460-00-4 460-00-4	BFB BFB	93% 91%			30% 30%	

Analyzed

03/26/17

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-9

Lab Sample ID:

FA42237-3

Matrix:

AQ - Ground Water

Method: Project:

BMSMC, Humacao, PR

MADEP VPH REV 1.1

Date Sampled:

03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Prep Date Prep Batch **Analytical Batch** File ID DF Analyzed By AJC Run #1 UV078910.D 1 03/26/17 n/a n/a **GUV4186**

Run #2

Purge Volume

5.0 ml

BFB

Run #1

Run #2

460-00-4

MADEP VPH List

CAS No. Result RL **MDL** Units Q Compound C5- C8 Aliphatics (Unadj.) ND 100 35 ug/l 35 C9- C12 Aliphatics (Unadj.) ND 100 ug/l C9- C10 Aromatics (Unadj.) ND 100 35 ug/l CAS No. Run#1 Run#2 Limits Surrogate Recoveries 460-00-4 93% 70-130% **BFB**

93%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-11

Lab Sample ID: FA42237-4

Matrix:

AQ - Ground Water

Method:

MADEP VPH REV 1.1

Date Sampled: Date Received:

03/20/17 03/21/17

Percent Solids: n/a

Project:

BMSMC, Humacao, PR

Analytical Batch File ID DF Prep Date Prep Batch Analyzed By **GUV4186** Run #1 UV078911.D 1 03/26/17 AJC n/a n/a

Run #2

Purge Volume

Run #1 Run #2

5.0 ml

MADEP VPH List

CAS No. Compound Result RLMDL Units Q

> C5- C8 Aliphatics (Unadj.) ND 100 35 ug/l C9- C12 Aliphatics (Unadj.) ND 100 35 ug/l C9- C10 Aromatics (Unadj.) ND 100 35 ug/l

CAS No. Surrogate Recoveries Run# 1 Run#2 Limits

460-00-4 **BFB** 95% 70-130% 460-00-4 **BFB** 93% 70-130%

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: S-30

Lab Sample ID: FA42237-5

Matrix:

AQ - Ground Water

Method:

MADEP VPH REV 1.1

Project:

BMSMC, Humacao, PR

Date Sampled: 03/20/17

Date Received: 03/21/17

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch GUV4186** Run #1 UV078912.D 1 03/26/17 AJC n/a n/a

Run #2

Purge Volume

5.0 ml

Run #1 Run #2

MADEP VPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.)	ND	100	35	ug/l	
	C9- C12 Aliphatics (Unadj.)	ND	100	35	ug/l	
	C9- C10 Aromatics (Unadj.)	ND	100	35	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
460-00-4	BFB	89%		70-1	30%	
460-00-4	BFB	90%		70-1	30%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: MW-19

Lab Sample ID:

FA42237-6

Matrix:

AQ - Ground Water

Method: Project:

MADEP VPH REV 1.1 BMSMC, Humacao, PR Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	UV078915.D	1	03/27/17	AJC	n/a	n/a	GUV4186
Run #2	UV078932.D	5	03/27/17	AJC	n/a	n/a	GUV4187
Run #3	UV078933.D	10	03/27/17	AJC	n/a	n/a	GUV4187

Purge Volume 5.0 ml Run #1 Run #2 5.0 ml Run #3 5.0 ml

MADEP VPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.)	ND 2550 ² ND	100 500 100	35 180 35	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run	# 3	Limits
460-00-4 460-00-4	BFB BFB	95% 96%	92% 92%	94% 96%		70-130% 70-130%

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA42237

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Humacao, PR

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA42237-4MS	UV078916.D	1	03/27/17	AJC	n/a	n/a	GUV4186
FA42237-4MSD	UV078917.D	1	03/27/17	AJC	n/a	n/a	GUV4186
FA42237-4	UV078911.D	1	03/26/17	AJC	n/a	n∕a	GUV4186

The QC reported here applies to the following samples:

Method: MADEP VPH REV 1.1

FA42237-1, FA42237-2, FA42237-3, FA42237-4, FA42237-5, FA42237-6

CAS No.	Compound	FA42237-4 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.)	ND ND ND	480 400 240	262 151 73.8	55* 38* 31*	480 400 240	262 153 82.6	55* 38* 34*	0 1 11	70-130/50 70-130/50 70-130/50
CAS No.	Surrogate Recoveries	MS	MSD	FA	42237-4	Limits				
460-00-4 460-00-4	BFB BFB	95% 93%	95% 90%	959 939		70-1309 70-1309				

^{* =} Outside of Control Limits.

Report of Analysis

Page 1 of 1

GNN919

Client Sample ID: EB032017 Lab Sample ID:

File ID

NN018219.D

NN018245.D

FA42237-1

Date Sampled: 03/20/17

Matrix:

AQ - Equipment Blank

DF

1

1

Date Received: 03/21/17

Method:

MADEP EPH REV 1.1 SW846 3510C

Analyzed

04/17/17

04/19/17

Percent Solids: n/a

Project:

Run #1

Run #2 a

BMSMC, Humacao, PR

By	Prep Date 03/27/17	Prep Batch	Analytical Batch
MG		OP64362	GNN917

OP64699

	Initial Volume	Final Volume	
Run #1	1000 ml	2.0 ml	
Run #2	1050 ml	2.0 ml	

04/18/17

MG

MAEPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.)	87.7	200	80	ug/l	J
	C9-C18 Aliphatics	ND	200	50	ug/l	
	C19-C36 Aliphatics	67.2	200	50	ug/l	J
	•					
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
3386-33-2	1-Chlorooctadecane	56%	33% b	40-1	40%	
580-13-2	2-Bromonaphthalene	69%	65%	40-1	40%	
84-15-1	o-Terphenyl	35% b	56%	40-1	40%	
321-60-8	2-Fluorobiphenyl	38% b	62%	40-1	40%	

(a) Confirmation run for surrogate recoveries.

(b) Outside control limits due to matrix interference. Confirmed by re-extraction and reanalysis. Beyond hold time.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: FB032017 Lab Sample ID:

FA42237-2

Date Sampled: 03/20/17

Matrix: Method: AQ - Field Blank Water MADEP EPH REV 1.1 SW846 3510C Date Received: 03/21/17

Project:

BMSMC, Humacao, PR

DF

1

Percent Solids: n/a

Analytical Batch

Run #1

File ID NN018183.D Analyzed By 04/14/17 MG Prep Date 03/27/17

Prep Batch OP64362

GNN914

Run #2

Initial Volume

Final Volume

Run #1

1000 ml

Run #2

2.0 ml

MAEPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	82.5 ND ND	200 200 200	80 50 50	ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
3386-33-2 580-13-2 84-15-1 321-60-8	1-Chlorooctadecane 2-Bromonaphthalene o-Terphenyl 2-Fluorobiphenyl	54% 68% 62% 65%		40-1 40-1	40% 40% 40% 40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-9

Lab Sample ID:

FA42237-3

AQ - Ground Water

MADEP EPH REV 1.1 SW846 3510C

Date Sampled: Date Received:

03/20/17

Percent Solids: n/a

03/21/17

Method: Project:

Matrix:

BMSMC, Humacao, PR

DF

1

Analytical Batch

Run #1

File ID NN018166.D Analyzed 04/13/17

By MG

Prep Batch Prep Date 03/27/17

GNN914 OP64362

Run #2

Initial Volume Final Volume

Run #1 Run #2 1000 ml

2.0 ml

MAEPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics	ND ND	200 200	80 50	ug/l ug/l	
	C19-C36 Aliphatics	ND	200	50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
3386-33-2	1-Chlorooctadecane	52%		40-1	40%	
580-13-2	2-Bromonaphthalene	88%		40-1	40%	
84-15-1	o-Terphenyl	81%		40-1	40%	
321-60-8	2-Fluorobiphenyl	85%		40-1	40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-11

Lab Sample ID: FA42237-4

Matrix: Method:

Project:

AQ - Ground Water

MADEP EPH REV 1.1 SW846 3510C

BMSMC, Humacao, PR

Date Sampled: 03/20/17

Date Received: 03/21/17

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	NN017986.D	1	03/31/17	MG	03/27/17	OP64362	GNN906
Run #2 a	NN018063.D	1	04/05/17	MG	03/27/17	OP64362	GNN909

1	Initial Volume	Final Volume
ъ из		
Run #1	1000 ml	2.0 ml
Run #2	1000 ml	2.0 ml

MAEPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.)	ND	200	80	ug/l	
	C9-C18 Aliphatics	ND	200	50	ug/l	
	C19-C36 Aliphatics	ND	200	50	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
3386-33-2	1-Chlorooctadecane	38% b	39%	40-1	40%	
580-13-2	2-Bromonaphthalene	74%	75%	40-1	40%	
84-15-1	o-Terphenyl	66%	58%	40-1	40%	
321-60-8	2-Fluorobiphenyl	75%	73%	40-1	40%	

(a) Confirmation run for surrogate recoveries.

(b) Outside control limits due to matrix interference. Confirmed by reanalysis. Insufficient sample for reextraction.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

MG

200

50

ug/l

Page 1 of 1

Client Sample ID: S-30

Lab Sample ID:

FA42237-5

File ID

AQ - Ground Water

Prep Date

03/27/17

Date Sampled: 03/20/17

Date Received: 03/21/17

MADEP EPH REV 1.1 SW846 3510C

Analyzed

04/13/17

BMSMC, Humacao, PR

DF

1

Percent Solids: n/a

Prep Batch

Analytical Batch

OP64362 **GNN914**

Run #1 Run #2

Matrix:

Method:

Project:

Initial Volume Final Volume

C19-C36 Aliphatics

NN018167.D

Run #1

1000 ml

2.0 ml

Run #2

MAEPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics	ND ND	200 200	80 50	ug/l ug/l	

ND

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
3386-33-2	1-Chlorooctadecane	54%		40-140%
580-13-2	2-Bromonaphthalene	81%		40-140%
84-15-1	o-Terphenyl	68%		40-140%
321-60-8	2-Fluorobiphenyl	77%		40-140%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-19 FA42237-6

Lab Sample ID: Matrix:

AQ - Ground Water

MADEP EPH REV 1.1 SW846 3510C

BMSMC, Humacao, PR

Date Sampled: 03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Prep Date Prep Batch **Analytical Batch** File ID DF Analyzed By **GNN914** MG 03/27/17 OP64362 Run #1 NN018168.D 1 04/13/17

Run #2

Method: Project:

> Final Volume Initial Volume

Run #1 Run #2

1000 ml

2.0 ml

MAEPH List

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	189 ND ND	200 200 200	80 50 50	ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
3386-33-2 580-13-2 84-15-1 321-60-8	1-Chlorooctadecane 2-Bromonaphthalene o-Terphenyl 2-Fluorobiphenyl	54% 88% 84% 84%	40-140% 40-140% 40-140% 40-140%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA42237

Project:

Account:

BMSMC, Humacao, PR

AMANYWP Anderson, Mulholiand & Associates

The QC reported here applies to the following samples:

Method: MADEP EPH REV 1.1

Page 1 of 1

FA42237-1, FA42237-2, FA42237-3, FA42237-4, FA42237-5, FA42237-6

CAS No.	Compound	FA42237-4 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	ND ND ND	3400 1200 1600	2650 680 1180	78 57 74	3400 1200 1600	2750 667 1220	81 56 76	4 2 3	40-140/50 40-140/50 40-140/50
CAS No.	Surrogate Recoveries	MS	MSD	FA	42237-4	FA4223	87-4 Lii	nits		
3386-33-2 580-13-2 84-15-1 321-60-8	1-Chlorooctadecane 2-Bromonaphthalene o-Terphenyl 2-Fluorobiphenyl	62% 80% 72% 79%	66% 88% 78% 87%	389 749 669 759	6	39%* 75% 58% 73%	40- 40-	140% 140% 140% 140%	15	

(a) Confirmation run for surrogate recoveries.

(b) Outside control limits due to matrix interference. Confirmed by reanalysis. Insufficient sample for reextraction.

^{* =} Outside of Control Limits.

By ANJ Prep Date

n/a

Analytical Batch

N:GGH5696

EB032017 FA42237-1

Matrix:

AQ - Equipment Blank SW846-8015C (DAI)

Method: Project:

Run #1 a

BMSMC, Humacao, PR

DF

1

Date Sampled:

03/20/17 Date Received: 03/21/17

Percent Solids: n/a

Prep Batch

n/a

Run #2

Low Molecular Alcohol List

File ID

GH109208.D

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CASNo	Surrogate Recoveries	Run# 1	Pun# 2	I im	ite	

Analyzed

03/27/17

CAS No. Surrogate Recoveries Run# 1 Run# 2 111-27-3 Hexanol 77% 56-145% 56-145% 111-27-3 Hexanol 77%

(a) Analysis performed at SGS Accutest, Dayton, NJ.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

ANJ

Page 1 of 1

Client Sample ID: FB032017

Lab Sample ID:

FA42237-2

AQ - Field Blank Water

Date Received:

Prep Batch

Date Sampled: 03/20/17 03/21/17

Matrix: Method:

SW846-8015C (DAI)

Percent Solids: n/a

n/a

Project:

BMSMC, Humacao, PR

DF

1

Prep Date

n/a

Analytical Batch N:GGH5696

Run #1 a Run #2

Low Molecular Alcohol List

File ID

GH109209.D

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lin	nits	
111-27-3	Hexanol	93%		56-	145%	
111-27-3	Hexanol	90%		56-	145%	

Analyzed

03/27/17

(a) Analysis performed at SGS Accutest, Dayton, NJ.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-9 Lab Sample ID:

FA42237-3

Matrix: Method:

Project:

AQ - Ground Water SW846-8015C (DAI)

BMSMC, Humacao, PR

Date Sampled: 03/20/17

Date Received: 03/21/17

Percent Solids: n/a

Run #1 ª	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	GH109210.D	1	03/27/17	ANJ	n/a	n/a	N:GGH5696
Kun #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
111-27-3	Hexanol	91%		56-1	45%	
111-27-3	Нехапоі	89%		56-1	45%	

(a) Analysis performed at SGS Accutest, Dayton, NJ.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-11

Lab Sample ID: FA42237-4

Matrix: Method: Project:

Run #2

AQ - Ground Water SW846-8015C (DAI)

BMSMC, Humacao, PR

Date Sampled: 03/20/17

Date Received: 03/21/17 Percent Solids: n/a

Prep Batch **Analytical Batch** DF Analyzed Prep Date File ID By ANJ N:GGH5696 Run #1 a GH109201.D 03/27/17 n/a

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/I	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/I	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits		
111-27-3	Hexanol	82%		56-1	45%	
111-27-3	Hexanol	74%		56-1	45%	

(a) Analysis performed at SGS Accutest, Dayton, NJ.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-30

Lab Sample ID:

FA42237-5

AQ - Ground Water SW846-8015C (DAI)

Date Sampled: 03/20/17 Date Received: 03/21/17

Method: Project:

Matrix:

BMSMC, Humacao, PR

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1 a	GH109204.D	1	03/27/17	ANJ	n/a	n/a	N:GGH5696

Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run#2	Lim	its	
111-27-3	Hexanol	90%	S.	56-1	45%	
111-27-3	Hexanol	106%		56-1	45%	

(a) Analysis performed at SGS Accutest, Dayton, NJ.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

ANJ

Prep Date

Page 1 of 1

Client Sample ID: MW-19

Lab Sample ID: FA42237-6

GH109205.D

Matrix: Method: AQ - Ground Water SW846-8015C (DAI) Date Sampled: Date Received:

03/20/17 03/21/17

Percent Solids: n/a

Project:

BMSMC, Humacao, PR

1

File ID DF Analyzed

Analytical Batch Prep Batch N:GGH5696 n/a

Run #1 a Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	87%		56-1	45%	
111-27-3	Hexanol	108%		56-1	45%	

03/27/17

(a) Analysis performed at SGS Accutest, Dayton, NJ.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Method: SW846-8015C (DAI)

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA42237

Account: **ALSE SGS Accutest Southeast**

Project: AMANYWP: BMSMC, Humacao, PR

Sample File ID FA42237-4MS GH109202.D FA42237-4MSD GH109203.D FA42237-4 GH109201.D	1	Analyzed 03/27/17 03/27/17 03/27/17	By XPL XPL XPL	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch GGH5696 GGH5696 GGH5696
--	---	--	-------------------------	--------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

FA42237-1, FA42237-2, FA42237-3, FA42237-4, FA42237-5, FA42237-6

CAS No.	Compound	FA42237-4 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
64-17-5 78-83-1 67-63-0	Ethanol Isobutyl Alcohol Isopropyl Alcohol	ND ND ND	5000 5000 5000	4750 5160 5520	95 103 110	5000 5000 5000	4090 5710 6030	82 114 121	15 10 9	58-145/27 69-131/25 70-133/28
71-23-8 71-36-3 78-92-2	n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol	ND ND ND	5000 5000 5000	5470 5260 6310	109 105 126	5000 5000 5000	5330 5190 6230	107 104 125	3 1 1	66-137/29 63-131/25 64-136/25
67-56-1	Methanol	ND	5000	4550	91	5000	7190	144	45* a	48-148/34
CAS No.	Surrogate Recoveries	MS	MSD	FA	42237-4	Limits				
111-27-3 111-27-3	Hexanol Hexanol	84% 81%	80% 77%	829 749		56-1459 56-1459	-			

(a) Outside of in house control limits.

^{* =} Outside of Control Limits.

Report of Analysis

MV

Page 1 of 1

Client Sample ID: EB032017 Lab Sample ID:

FA42237-1

Matrix:

File ID

KK82506.D

AQ - Equipment Blank SW846 8081B SW846 3510C

Analyzed

03/30/17

03/20/17 Date Sampled: Date Received: 03/21/17

Percent Solids: n/a

Method: Project:

BMSMC, Humacao, PR

DF

1

By Prep Date

03/27/17

Prep Batch OP64363

Analytical Batch GKK2641

Run #1 Run #2

> **Final Volume** Initial Volume

Run #1

5.0 ml 250 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.040	0.011	ug/l	
319-84-6	alpha-BHC	ND	0.040	0.0087	ug/l	
319-85-7	beta-BHC	ND	0.040	0.010	ug/l	
319-86-8	delta-BHC	ND	0.040	0.0095	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.040	0.0089	ug/l	
5103-71-9	alpha-Chlordane	ND	0.040	0.0077	ug/l	
5103-74-2	gamma-Chlordane	ND	0.040	0.0088	ug/l	
60-57-1	Dieldrin	ND	0.040	0.0095	ug/l	
72-54-8	4,4'-DDD	ND	0.080	0.020	ug/l	
72-55-9	4,4'-DDE	ND	0.080	0.020	ug/l	
50-29-3	4,4'-DDT	ND	0.080	0.020	ug/l	
72-20-8	Endrin	ND	0.080	0.0084	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.080	0.0063	ug/l	
7421-93-4	Endrin aldehyde	ND	0.080	0.011	ug/l	
53494-70-5	Endrin ketone	ND	0.080	0.0062	ug/I	
959-98-8	Endosulfan-I	ND	0.040	0.0064	ug/l	
33213-65-9	Endosulfan-II	ND	0.040	0.0060	ug/l	
76-44-8	Heptachlor	ND	0.040	0.010	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.040	0.0081	ug/l	
72-43-5	Methoxychlor	ND	0.080	0.020	ug/l	
8001-35-2	Toxaphene	ND	2.0	0.86	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	77%		42-1	27%	1

Tetracnioro-m-xyiene 8//-09-8 2051-24-3 Decachlorobiphenyl

83%

27-127%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

MV

Prep Date 03/27/17

Page 1 of 1

Client Sample ID: FB032017 Lab Sample ID:

FA42237-2 AO - Field Blank Water

Date Sampled:

Q

03/20/17 Date Received: 03/21/17

Matrix: Method:

SW846 8081B SW846 3510C

Analyzed

03/30/17

Percent Solids: n/a

Project:

BMSMC, Humacao, PR

DF

1

Analytical Batch Prep Batch OP64363 **GKK2641**

Run #1 Run #2

Final Volume Initial Volume

250 ml

File ID

KK82507.D

5.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.040	0.011	ug/l
319-84-6	alpha-BHC	ND	0.040	0.0087	ug/l
319-85-7	beta-BHC	ND	0.040	0.010	ug/l
319-86-8	delta-BHC	ND	0.040	0.0095	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.040	0.0089	ug/l
5103-71-9	alpha-Chlordane	ND	0.040	0.0077	ug/l
5103-74-2	gamma-Chlordane	ND	0.040	0.0088	ug/l
60-57-1	Dieldrin	ND	0.040	0.0095	ug/l
72-54-8	4,4'-DDD	ND	0.080	0.020	ug/l
72-55-9	4,4'-DDE	ND	0.080	0.020	ug/l
50-29-3	4,4'-DDT	ND	0.080	0.020	ug/l
72-20-8	Endrin	ND	0.080	0.0084	ug/l
1031-07-8	Endosulfan sulfate	ND	0.080	0.0063	ug/l
7421-93-4	Endrin aldehyde	ND	0.080	0.011	ug/l
53494-70-5	Endrin ketone	ND	0.080	0.0062	ug/l
959-98-8	Endosulfan-I	ND	0.040	0.0064	ug/l
33213-65-9	Endosulfan-II	ND	0.040	0.0060	ug/l
76-44-8	Heptachlor	ND	0.040	0.010	ug/l
1024-57-3	Heptachlor epoxide	ND	0.040	0.0081	ug/l
72-43-5	Methoxychlor	ND	0.080	0.020	ug/I
8001-35-2	Toxaphene	ND	2.0	0.86	ug/I
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
877-09-8	Tetrachloro-m-xylene	84%		42-1	27% /;
2051-24-3	Decachlorobiphenyl	83%		27-1	27%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

ifact Inflants Méndez IC # 188

SGS Accutest

Report of Analysis

Ву

MV

Page 1 of 1

Client Sample ID: MW-11 Lab Sample ID:

FA42237-4

AQ - Ground Water

Date Sampled: 03/20/17 Date Received:

Matrix: Method:

SW846 8081B SW846 3510C

03/21/17 Percent Solids: n/a

Project:

BMSMC, Humacao, PR

DF

1

Run #1

File ID KK82508.D Analyzed 03/30/17

Prep Date 03/27/17

Prep Batch OP64363

Analytical Batch GKK2641

Run #2

Initial Volume Final Volume

Run #1

250 ml

5.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.040	0.011	ug/l	
319-84-6	alpha-BHC	ND	0.040	0.0087	ug/l	
319-85-7	beta-BHC	ND	0.040	0.010	ug/l	
319-86-8	delta-BHC	ND	0.040	0.0095	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.040	0.0089	ug/l	
5103-71-9	alpha-Chlordane	ND	0.040	0.0077	ug/l	
5103-74-2	gamma-Chlordane	ND	0.040	0.0088	ug/l	
60-57-1	Dieldrin	ND	0.040	0.0095	ug/l	
72-54-8	4,4'-DDD	ND	0.080	0.020	ug/l	
72-55-9	4,4'-DDE	ND	0.080	0.020	ug/l	
50-29-3	4,4'-DDT	ND	0.080	0.020	ug/l	
72-20-8	Endrin	ND	0.080	0.0084	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.080	0.0063	ug/l	
7421-93-4	Endrin aldehyde	ND	0.080	0.011	ug/l	
53494-70-5	Endrin ketone	ND	0.080	0.0062	ug/I	
959-98-8	Endosulfan-I	ND	0.040	0.0064	ug/l	
33213-65-9	Endosulfan-II	ND	0.040	0.0060	ug/l	
76-44-8	Heptachlor	ND	0.040	0.010	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.040	0.0081	ug/l	
72-43-5	Methoxychlor	ND	0.080	0.020	ug/l	
8001-35-2	Toxaphene	ND	2.0	0.86	ug/l	
						502

CAS No. Surrogate Recoveries

877-09-8

2051-24-3

Run#1

78%

84%

Run#2

Limits

42-127% 27-127%

ituel infant Méndez (# 188

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

Tetrachloro-m-xylene

Decachlorobiphenyl

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS Accutest

Report of Analysis

Page 1 of 1

Client Sample ID: S-30

Lab Sample ID: FA42237-5

Matrix: Method: AQ - Ground Water

SW846 8081B SW846 3510C

Date Received: 03/21/17

Date Sampled: 03/20/17

Percent Solids: n/a

Project:

BMSMC, Humacao, PR

Run #1

File ID DF KK82511.D 1

Analyzed 03/30/17

By MV

Prep Date Prep Batch OP64363 03/27/17

Analytical Batch

GKK2641

Run #2

Initial Volume Final Volume

Run #1

250 ml

5.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.040	0.011	ug/I	
319-84-6	alpha-BHC	ND	0.040	0.0087	ug/l	
319-85-7	beta-BHC	ND	0.040	0.010	ug/l	
319-86-8	delta-BHC	ND	0.040	0.0095	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.040	0.0089	ug/l	
5103-71-9	alpha-Chlordane	ND	0.040	0.0077	ug/l	
5103-74-2	gamma-Chlordane	ND	0.040	0.0088	ug/l	
60-57-1	Dieldrin	ND	0.040	0.0095	ug/l	
72-54-8	4,4'-DDD	ND	0.080	0.020	ug/l	
72-55-9	4,4'-DDE	ND	0.080	0.020	ug/l	
50-29-3	4,4'-DDT	ND	0.080	0.020	ug/l	
72-20-8	Endrin	ND	0.080	0.0084	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.080	0.0063	ug/l	
7421-93-4	Endrin aldehyde	ND	0.080	0.011	ug/l	
53494-70-5	Endrin ketone	ND	0.080	0.0062	ug/l	
959-98-8	Endosulfan-I	ND	0.040	0.0064	ug/l	
33213-65-9	Endosulfan-II	ND	0.040	0.0060	ug/l	
76-44-8	Heptachlor	ND	0.040	0.010	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.040	0.0081	ug/l	
72-43-5	Methoxychlor	ND	0.080	0.020	ug/l	
8001-35-2	Toxaphene	ND	2.0	0.86	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	2.00

Tetrachloro-m-xylene

Decachlorobiphenyl

79% 95% 42-127% 27-127%

ND = Not detected

877-09-8

2051-24-3

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA42237

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Humacao, PR

				_			4 1 4 1 1 1 1 1
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP64363-MS	KK82509.D	1	03/30/17	MV	03/27/17	OP64363	GKK2641
OP64363-MSD	KK82510.D	1	03/30/17	MV	03/27/17	OP64363	GKK2641
FA42237-4	KK82508.D	1	03/30/17	MV	03/27/17	OP64363	GKK2641

The QC reported here applies to the following samples:

Method: SW846 8081B

FA42237-1, FA42237-2, FA42237-4, FA42237-5

	•	FA42237-4	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
309-00-2	Aldrin	ND	1	1.2	120	1	1.5	150*	22*	61-126/21
319-84-6	alpha-BHC	ND	1	1.2	120	1	1.5	150*	22	66-129/23
319-85-7	beta-BHC	ND	1	1.3	130	1	1.6	160*	21	66-132/23
319-86-8	delta-BHC	ND	1	1.3	130	1	1.6	160*	21	41-142/27
58-89-9	gamma-BHC (Lindane)	ND	1	1.3	130	1	1.6	160*	21	68-132/22
5103-71-9	alpha-Chlordane	ND	1	1.3	130	1	1.7	170*	27*	66-131/24
5103-74-2	gamma-Chlordane	ND	1	1.4	140*	1	1.7	170*	19	68-128/21
60-57-1	Dieldrin	ND	1	1.2	120	1	1.5	150*	22	66-138/22
72-54-8	4,4'-DDD	ND	1	1.2	120	1	1.5	150*	22	63-138/24
72-55-9	4,4'-DDE	ND	1	1.2	120	1	1.4	140*	15	59-133/23
50-29-3	4,4'-DDT	ND	1	1.4	140	1	1.8	180*	25	55-145/27
72-20-8	Endrin	ND	1	1.2	120	1	1.5	150*	22	71-147/23
1031-07-8	Endosulfan sulfate	ND	1	1.2	120	1	1.6	160*	29*	64-128/26
7421-93-4	Endrin aldehyde	ND	1	1.2	120	1	1.6	160*	29*	60-130/22
53494-70-5	Endrin ketone	ND	1	1.3	130	1	1.7	170*	27*	66-137/25
959-98-8	Endosulfan-I	ND	1	1.1	110	1	1.3	130	17	66-133/21
33213-65-9	Endosulfan-II	ND	1	1.1	110	1	1.4	140*	24*	65-133/22
76-44-8	Heptachlor	ND	1	1.2	120	1	1.5	150*	22	63-130/23
1024-57-3	Heptachlor epoxide	ND	1	1.2	120	1	1.5	150*	22	67-129/23
72-43-5	Methoxychlor	ND	1	1.4	140*	1	1.8	180*	25	60-136/25
				_						
CAS No.	Surrogate Recoveries	MS	MSD	FA	\4223 7- 4	Limits				
877-09-8	Tetrachloro-m-xylene	78%	92%	78	%	42-1279	%			
2051-24-3	Decachlorobiphenyl	86%	98%	84		27-1279	%			
							2024	MOOR		

^{* =} Outside of Control Limits.

					f	A					237
	****					210	در سون		_	.UF	
		1/1	477	<u> </u>						_	
-									and the	4 Ioni	Marrie Contra
WESTONICLES	WEST THE PECH, PTOLIL THA	CHRESA	AMETRIAL	METRICAL COOK	Man-man/1984	BOLLING CHARL CHARTA HERMAN.	WORDSTRON	Watervier	VIAMEVIR.	PROBLIPERTED.	DAY COMMAND MICH COMMAND COMMA
X	X	X	×	×	X	X	X.	X.	X	×	
X	X	X	X	×	X	X	X	X	×	×	
X	X	I.	X	X	X	X	X.	X.	X.		
X	X	X.	X	X	×	X	X	X.	X	X	article Control
×	X	X.	X	X	X	X	Х.	X	×	×	·. 6
X	X	X	X	LX.	L.X.	X.	LX	LX.	X	X	
X	×	×	Ľ.	×.	. X.	X.		X.	X	x	
X	X	X	X	X	.A.	. A.			X	-	
X.	LX.	-	⊢		<u> </u>		X	<u> </u>	<u> </u>	\vdash	
X	×	-	—	⊢	\vdash	-	X	_	\vdash	\vdash	

CHAIN OF CUSTODY

HR WES to 0 2 4

NS WES to 0 2 4

NS WES to 0 2 4

NS GW 50 0 2 2

HR GW 50 0 2 2 4

Comments W. Same
Comments W. Same
Comments W. Same
(M. National Section 1)

<u>-</u>

9:07 19:40

FL

-

10epts

☐ 18ep#

34	3.2	34	32	3.6
----	-----	----	----	-----

FA42237: Chain of Custody

Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

FA42237

Laboratory:

Accutest, Florida

Analysis:

SW846-8260C

Number of Samples:

10

Location:

BMSMC - Humacao, PR

SUMMARY:

Ten (10) samples were analyzed for selected volatile organic compounds (VOA Special List) by method SW846-8260C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Initial calibration, initial calibration verification, and continuing calibration verification within the method and validation guidance document required performance criteria except for the cases described in the Data Review Worksheet. Closing calibration check verification included in data package.

Analytes not meeting the continuing calibration performance criteria were qualified as estimated in affected samples.

Analytes not meeting the method continuing calibration verification performance criteria but within the guidance document performance criteria their results are not qualified in the affected samples.

2. No target analytes detected in equipment/field/trip blanks analyzed except in the cases described in the Data Review Worksheet. Analytes not detected in sample batch. No qualification required.

Sample FA42237-7 identified as TB032017NR in c-o-c form an as EB032017NR in the analysis report.

3. MS/MSD % recoveries and RPD in sample FA42237-4 within laboratory control limits except for the cases described in the Data Review Worksheet.

Results for 1,3-butadiene rejected (R) in sample FA42237-4.

MS/MSD % recoveries and RPD in sample FA42237-6 within laboratory control limits except for the cases described in the Data Review Worksheet. No qualification made based on RPD outside the laboratory control limits, professional judgment. No qualification made for analytes having either the MS or the MSD % recovery outside laboratory control limits, professional judgment. Results for ethylbenzene not qualified; ouside control limit due to high level in sample relative to spike amount.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 7,/2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA42237-1

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: AQ -Equipment Blank

Analyte Name	Result	Units Dilut	Dilution Factor	Lab Flag	Validation	Reportable	
Acetone	25	ng/L	1.0	•	O	Yes	
Benzene	1.0	ug/L	1.0	•	⊃	Yes	
Benzyl Chloride	2.0	ng/L	1.0	•	⊃	Yes	
Bromochloromethane	1.0	ng/L	1.0	•	⊃	Yes	
Bromodichloromethane	1.0	ng/L	1.0	•	⊃	Yes	
Bromoform	1.0	ng/L	1.0	,	ח	Yes	
1,3-Butadiene	2.0	ng/L	1.0	•	⊃	Yes	
2-Butanone (MEK)	2.0	ng/L	1.0	,	∩	Yes	
Carbon disulfide	2.0	ng/L	1.0	1	_	Yes	
Carbon tetrachloride	1.0	ng/L	1.0	1	(n)	Yes	
Chlorobenzene	1.0	ng/L	1.0	1	D	Yes	
Chloroethane	2.0	ng/L	1.0	ι	n	Yes	
Chloroform	1.0	ng/L	1.0	1	⊃	Yes	
Cyclohexane	1.0	ng/L	1.0	Ÿ	o	Yes	
Dibromochloromethane	1.0	ng/L	1.0	ι)	Yes	
1,2-Dibromo-3-chloropropane	5.0	1/8n	1.0	•	⊃	Yes	
1,2-Dibromoethane	2.0	ng/L	1.0		D	Yes	
Dichlorodifluoromethane	2.0	ng/L	1.0	1	⊃	Yes	
1,2-Dichlorobenzene	1.0	ng/L	1.0	9	⊃	Yes	
1,3-Dichlorobenzene	1.0	ng/L	1.0	ı	o	Yes	
1,4-Dichlorobenzene	1.0	ng/L	1.0	1	⊃	Yes	
1,1-Dichloroethane	1.0	ng/L	1.0	,	⊃	Yes	
1,2-Dichloroethane	1.0	ng/L	1.0	1	⊃	Yes	
1,1-Dichloroethene	1.0	ng/L	1.0	•	⊃	Yes	
cis-1,2-Dichloroethene	1.0	ng/L	1.0	•	D	Yes	

ug/L 1.0 - U	1.0 ug/L 1.0 - U Yes	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 U	ug/L 1.0 . U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	ug/L 1.0 - U	1.0	202
trans-1,2-Dichloroethene	1,2-Dichloropropane	cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	Ethylbenzene	Freon 113	2-Hexanone	Isopropylbenzene	p-isopropyltoluene	Methyl Acetate	Methyl Bromide	Methyl Chloride	Methylcyclohexane	Methylene chloride	4-Methyl-2-pentanone(MIBK)	Methyl Tert Butyl Ether	Styrene	Tert-Amyl Alcohol	Tert-Butyl-Alcohl	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Tetrahydrofuran	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Trichlorofluoromethane	1,2,4-Trimethylbenzene	Vinyl chloride	m,p-Xylene	

Sample ID: FA42237-2

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017 Matrix: AQ - Field Blank Water

Analyte Name	Result	Units Dilut	Dilution Factor	Lab Flag	Validation Reportable	Reportable
Acetone	25	ng/L	1.0	•	n	Yes
Benzene	1.0	ng/L	1.0	,)	Yes
Benzyl Chloride	2.0	ng/L	1.0	ı	⊃	Yes
Bromochloromethane	1.0	ng/L	1.0	1	⊃	Yes
Bromodichloromethane	1.0	ug/L	1.0	,	n	Yes
Bromoform	1.0	ng/L	1.0	ı	ם	Yes
1,3-Butadiene	2.0	ng/L	1.0	1	D	Yes
2-Butanone (MEK)	2.0	ng/L	1.0	í	⊃	Yes
Carbon disulfide	2.0	ng/L	1.0		D	Yes
Carbon tetrachloride	1.0	ng/L	1.0	ı	N)	Yes
Chlorobenzene	1.0	ng/L	1.0	ï	D	Yes
Chloroethane	2.0	ng/L	1.0	1	n	Yes
Chloroform	1.0	ng/L	1.0	ı	n	Yes
Cyclohexane	1.0	ng/L	1.0	1	n	Yes
Dibromochloromethane	1.0	ng/L	1.0	1	Ω	Yes
1,2-Dibromo-3-chloropropane	2.0	ng/L	1.0		ח	Yes
1,2-Dibromoethane	2.0	ng/L	1.0	1	n	Yes
Dichlorodifluoromethane	2.0	ng/L	1.0	à	⊃	Yes
1,2-Dichlorobenzene	1.0	ng/L	1.0	,	n	Yes
1,3-Dichlorobenzene	1.0	ng/L	1.0	ï	ח	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	9	⊃	Yes
1,1-Dichloroethane	1.0	ng/L	1.0	1	ח	Yes
1,2-Dichloroethane	1.0	ng/L	1.0	¢	Þ	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	i	ח	Yes
cis-1,2-Dichloroethene	1.0	ng/L	1.0	1	ם	Yes

Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
)	⊃	⊃	ם	ם	⊃	D	⊃	⊃	⊃	⊃	n	n	n	<u>ہ</u>	n	⊃	D	n	D) III	ח	ח	n	⊃	⊃	n	ח	⊃	Ω	כ	⊃	n
ä		ě,	,	,	i.	,	ı	1				•	•	•	,	1	•		¢			i	,	Ķ	,		Ü		ï	ı.	9	ı
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
1.0	1.0	1.0	1.0	1.0	1.0	10	1.0	1.0	20	2.0	2.0	1.0	2.0	5.0	1.0	1.0	20	20	1.0	1.0	2.0	1.0	2.0	2.0	1.0	1.0	1.0	2.0	1.0	1.0	2.0	1.0
trans-1,2-Dichloroethene	1,2-Dichloropropane	cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	Ethylbenzene	Freon 113	2-Hexanone	Isopropylbenzene	p-Isopropyltoluene	Methyl Acetate	Methyl Bromide	Methyl Chloride	Methyicyclohexane	Methylene chloride	4-Methyl-2-pentanone(MIBK)	Methyl Tert Butyl Ether	Styrene	Tert-Amyl Alcohol	Tert-Butyl Alcohol	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Tetrahydrofuran	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Trichlorofluoromethane	1,2,4-Trimethylbenzene	Vinyl chloride	m,p-Xylene	o-Xylene

Sample ID: FA42237-3

Sample location: BMSMC, Humacao, PR Sampling date: 3/20/2017 Matrix: Groundwater

Analyte Name	Result	Units Dilut	Dilution Factor	Lab Flag	Validation	Reportable	
Acetone	25	ng/L	1.0	1	D	Yes	
Benzene	1.0	ng/L	1.0	•	n	Yes	
Benzyl Chloride	2.0	ng/L	1.0		n	Yes	
Bromochloromethane	1.0	ng/L	1.0	•	n	Yes	
Bromodichloromethane	1.0	ng/L	1.0	•	⊃	Yes	
Bromoform	1.0	ng/L	1.0		n	Yes	
1,3-Butadiene	2.0	ng/L	1.0	•	ם	Yes	
2-Butanone (MEK)	5.0	ng/L	1.0	•	n	Yes	
Carbon disulfide	2.0	ng/L	1.0		n	Yes	
Carbon tetrachloride	1.0	ng/L	1.0	,	> (U)	Yes	
Chlorobenzene	1.0	ng/L	1.0	þ	n	Yes	
Chloroethane	2.0	ng/L	1.0		D	Yes	
Chloroform	1.0	ng/L	1.0	•	o	Yes	
Cyclohexane	1.0	ng/L	1.0		Ο	Yes	
Dibromochloromethane	1.0	ng/L	1.0	ŀ	n	Yes	
1,2-Dibromo-3-chloropropane	2.0	ng/L	1.0	•	O	Yes	
1,2-Dibromoethane	2.0	ng/L	1.0		D	Yes	
Dichlorodifluoromethane	2.0	ng/L	1.0	•	ם	Yes	
1,2-Dichlorobenzene	1.0	ng/L	1.0	1	⊃	Yes	
1,3-Dichlorobenzene	1.0	ng/L	1.0	1	⊃	Yes	
1,4-Dichlorobenzene	1.0	ng/L	1.0	ŗ	n	Yes	
1,1-Dichloroethane	1.0	ng/L	1.0	,)	Yes	
1,2-Dichloroethane	1.0	ng/L	1.0	,	n	Yes	
1,1-Dichloroethene	1.0	ng/L	1.0	1	⊃	Yes	
cis-1,2-Dichloroethene	1.0	ng/L	1.0	1	n	Yes	
trans-1,2-Dichloroethene	1.0	ng/L	1.0	,	ח	Yes	

Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
> =) ⊃)	D	n	ב	D	⊃	n	⊃	n	ב	ם	ם	n	n	n	ח	in the second	ם	ח	ח	n	ח	n	ב	כ	D	D	ח	n
3 1		a		č	•	v	i r	٠	,	1	,		ě	ž	٠	•	*	r	i	•	1	,		1		1	1		·	,
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ug/L ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
1.0	1.0	1.0	1.0	10	1.0	1.0	20	2.0	2.0	1.0	2.0	5.0	1.0	1.0	20	20	1.0	1.0	2.0	1.0	2.0	2.0	1.0	1.0	1.0	2.0	1.0	1.0	2.0	1.0
1,2-Dichloropropane cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	Ethylbenzene	Freon 113	2-Hexanone	Isopropylbenzene	p-Isopropyltoluene	Methyl Acetate	Methyl Bromide	Methyl Chloride	Methylcyclohexane	Methylene chloride	4-Methyl-2-pentanone(MIBK)	Methyl Tert Butyl Ether	Styrene	Tert-Amyl Alcohol	Tert-Butyl Alcohol	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Tetrahydrofuran	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Trichlorofluoromethane	1,2,4-Trimethylbenzene	Vinyl chloride	m,p-Xylene	o-Xylene

Sample ID: FA42237-4

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwater

Analyte Name	Result	Units Dilut	Dilution Factor	Lab Flag	Validation	Reportable	
Acetone	25	ng/L	1.0	1	⊃	Yes	
Benzene	1.0	ng/L	1.0	1	D	Yes	
Benzyl Chloride	2.0	ng/L	1.0	1	⊃	Yes	
Bromochloromethane	1.0	ng/L	1.0	ı	⊃	Yes	
Bromodichloromethane	1.0	ng/L	1.0		⊃	Yes	
Bromoform	1.0	ng/L	1.0	ı	<u> </u>	Yes	
1,3-Butadiene	5.0	ng/L	1.0	ı,	∝	Yes	
2-Butanone (MEK)	2.0	ng/L	1.0		D	Yes	
Carbon disulfide	2.0	ng/L	1.0	•	n	Yes	
Carbon tetrachloride	1.0	ng/L	1.0	,	/ [U]	Yes	
Chlorobenzene	1.0	ng/L	1.0	,	n	Yes	
Chloroethane	2.0	ng/L	1.0	,	n	Yes	
Chloroform	1.0	ng/L	1.0	ř.	O	Yes	
Cyclohexane	1.0	ng/L	1.0	•	Ο	Yes	
Dibromochloromethane	1.0	ng/L	1.0	1	n	Yes	
1,2-Dibromo-3-chloropropane	5.0	ng/L	1.0	1	n	Yes	
1,2-Dibromoethane	2.0	ng/L	1.0	•	O	Yes	
Dichlorodifluoromethane	2.0	ng/L	1.0	1	n	Yes	
1,2-Dichlorobenzene	1.0	ng/L	1.0	1	ם	Yes	
1,3-Dichlorobenzene	1.0	ng/L	1.0	٠	n	Yes	
1,4-Dichlorobenzene	1.0	ng/L	1.0	i	⊃	Yes	
1,1-Dichloroethane	1.0	ng/L	1.0	1	⊃	Yes	
1,2-Dichloroethane	1.0	ng/L	1.0	ì	⊃	Yes	
1,1-Dichloroethene	1.0	ng/L	1.0	ij	_	Yes	
cis-1,2-Dichloroethene	1.0	ng/L	1.0	9	n	Yes	
trans-1,2-Dichloroethene	1.0	ng/L	1.0)	Yes	

1,2-Dichloropropane	1.0	ng/L	1.0	1	n	Yes
cis-1,3-Dichloropropene	1.0	ng/L	1.0	•	n	Yes
trans-1,3-Dichloropropene	1.0	ng/L	1.0	į.	Ο	Yes
Ethylbenzene	1.0	ng/L	1.0	,	Ω	Yes
Freon 113	1.0	ng/L	1.0	ì	n	Yes
2-Hexanone	10	ng/L	1.0	,	n	Yes
Isopropylbenzene	1.0	ng/L	1.0		n	Yes
p-Isopropyltoluene	1.0	ng/L	1.0		_	Yes
Methyl Acetate	20	ng/L	1.0	1	n	Yes
Methyl Bromide	2.0	ng/L	1.0		⊃	Yes
Methyl Chloride	2.0	ng/L	1.0	1)	Yes
Methylcyclohexane	1.0	ng/L	1.0	,	n	Yes
Methylene chloride	5.0	ng/L	1.0	,	n	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ng/L	1.0		n	Yes
Methyl Tert Butyl Ether	1.2	ng/L	1.0		1	Yes
Styrene	1.0	ng/L	1.0		n	Yes
Tert-Amyl Alcohol	20	ng/L	1.0	1	n	Yes
Tert-Butyl Alcohol	20	ng/L	1.0	i	Ω	Yes
1,1,2,2-Tetrachloroethane	1.0	ng/L	1.0	,	n	Yes
Tetrachloroethene	1.0	ng/L	1.0) [n	Yes
Tetrahydrofuran	2.0	ng/L	1.0	,	n	Yes
Toluene	1.0	ng/L	1.0	r	⊃	Yes
1,2,3-Trichlorobenzene	2.0	ng/L	1.0	1	⊃	Yes
1,2,4-Trichlorobenzene	2.0	ng/L	1.0		⊃	Yes
1,1,1-Trichloroethane	1.0	ng/L	1.0	1	n	Yes
1,1,2-Trichloroethane	1.0	ng/L	1.0	1	n	Yes
Trichloroethene	1.0	ng/L	1.0		n	Yes
Trichlorofluoromethane	2.0	ng/L	1.0	r.	n	Yes
1,2,4-Trimethylbenzene	1.0	ng/L	1.0		n	Yes
Vinyl chloride	1.0	ng/L	1.0	í	n	Yes
m,p-Xylene	2.0	ng/L	1.0	100	⊃	Yes
o-Xylene	1.0	ng/L	1.0	ī	n	Yes

Sample ID: FA42237-5
Sample location: BMSMC, Humacao, PR
Sampling date: 3/20/2017
Matrix: Groundwater

Analyte Name	Result	Units Diluti	Dilution Factor	Lab Flag	Validation	Reportable	
Acetone	25	ng/L			⊃	Yes	
Benzene	0.48	ng/L	1.0	_	_	Yes	
Benzyl Chloride	2.0	ng/L	1.0	4	⊃	Yes	
Bromochloromethane	1.0	ng/L	1.0	,	⊃	Yes	
Bromodichloromethane	1.0	ng/L	1.0	1	⊃	Yes	
Bromoform	1.0	ng/L	1.0	į	⊃	Yes	
1,3-Butadiene	2.0	ng/L	1.0	•	⊃	Yes	
2-Butanone (MEK)	2.0	ng/L	1.0	1	⊃	Yes	
Carbon disulfide	2.0	ug/L	1.0	,	D	Yes	
Carbon tetrachloride	1.0	ug/L	1.0	ŧ	In	Yes	
Chlorobenzene	0.34	ng/L	1.0	_	_	Yes	
Chloroethane	2.0	ng/L	1.0	,	⊃	Yes	
Chloroform	1.0	ng/L	1.0	1.	⊃	Yes	
Cyclohexane	1.0	ng/L	1.0	,	⊃	Yes	
Dibromochloromethane	1.0	ug/L	1.0	1	D	Yes	
1,2-Dibromo-3-chloropropane	5.0	ng/L	1.0	ı	⊃	Yes	
1,2-Dibromoethane	2.0	ug/L	1.0	,	⊃	Yes	
Dichlorodifluoromethane	2.0	ng/L	1.0	1	n	Yes	
1,2-Dichlorobenzene	1.0	ng/L	1.0	1	⊃	Yes	
1,3-Dichlorobenzene	1.0	ng/L	1.0	ı	D	Yes	
1,4-Dichlorobenzene	1.0	ng/L	1.0	1	n	Yes	
1,1-Dichloroethane	1.0	ng/L	1.0	ı	⊃	Yes	
1,2-Dichloroethane	1.0	ng/L	1.0	•	n	Yes	
1,1-Dichloroethene	1.0	ug/L	1.0	•	⊃	Yes	
cis-1,2-Dichloroethene	1.0	ng/L	1.0	1	⊃	Yes	
trans-1,2-Dichloroethene	1.0	ng/L	1.0	,	D	Yes	

1,2-Dichloropropane	1.0	ug/L	1.0	,	O	Yes
cis-1,3-Dichloropropene	1.0	ng/L	1.0		n	Yes
trans-1,3-Dichloropropene	1.0	ng/L	1.0	,	Ω	Yes
Ethylbenzene	1.0	ng/L	1.0	i	n	Yes
Freon 113	1.0	ng/L	1.0	,	n	Yes
2-Hexanone	10	ng/L	1.0	6	Ω	Yes
Isopropylbenzene	1.2	ng/L	1.0		1	Yes
p-Isopropyltoluene	1.0	ng/L	1.0	Ţ	n	Yes
Methyl Acetate	20	ng/L	1.0		n	Yes
Methyl Bromide	2.0	ng/L	1.0		_	Yes
Methyl Chloride	2.0	ng/L	1.0	i	_	Yes
Methylcyclohexane	1.0	ng/L	1.0	1	⊃	Yes
Methylene chloride	5.0	ng/L	1.0	1	_	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ng/L	1.0	ï	_	Yes
Methyl Tert Butyl Ether	4.5	ng/L	1.0	9	1	Yes
Styrene	1.0	ng/L	1.0	ì	⊃	Yes
Tert-Amyl Alcohol	20	ng/L	1.0	i.	D	Yes
Ter-Butyl Alcohol	32.0	ng/L	1.0		1	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0		n D	Yes
Tetrachloroethene	1.0	ng/L	1.0	i j) (i)	Yes
Tetrahydrofuran	5.0	ng/L	1.0	į	D	Yes
Toluene	1.0	ng/L	1.0		⊃	Yes
1,2,3-Trichlorobenzene	2.0	ng/L	1.0	1	D	Yes
1,2,4-Trichlorobenzene	2.0	ng/L	1.0	•	D	Yes
1,1,1-Trichloroethane	1.0	ng/L	1.0	,	D	Yes
1,1,2-Trichloroethane	1.0	ng/L	1.0	1	D	Yes
Trichloroethene	1.0	ng/L	1.0	1	D	Yes
Trichlorofluoromethane	2.0	ng/L	1.0		D	Yes
1,2,4-Trimethylbenzene	1.0	ng/L	1.0	1	n	Yes
Vinyl chloride	1.0	ng/L	1.0		⊃	Yes
m,p-Xylene	2.0	ng/L	1.0		⊃	Yes
o-Xylene	1.0	ng/L	1.0)	D	Yes

Sample ID: FA42237-6
Sample location: BMSMC, Humacao, PR
Sampling date: 3/20/2017
Matrix: Groundwater

Analyte Name	Result	Units Diluti	Jnits Dilution Factor	Lab Flag	Validation	Validation Reportable	
Acetone	250	ug/L	10	1	n	Yes	
Benzene	10	ng/L	10		n	Yes	
Benzyl Chloride	20	ug/L	10	,	n	Yes	
Bromochloromethane	10	ng/L	10		n	Yes	
Bromodichloromethane	10	ng/L	10	9	Ω	Yes	
Bromoform	10	ng/L	10	ï	o	Yes	
1,3-Butadiene	20	ng/L	10	1	n	Yes	
2-Butanone (MEK)	20	ng/L	10	٠	n	Yes	
Carbon disulfide	20	ng/L	10	ï	ח	Yes	
Carbon tetrachloride	10	ng/L	10	9) III	Yes	
Chlorobenzene	10	ng/L	10	1	n	Yes	
Chloroethane	20	ug/L	10	ı	⊃	Yes	
Chloroform	10	ug/L	10	į)	Yes	
Cyclohexane	10	ug/L	10	ı	⊃	Yes	
Dibromochloromethane	10	ng/L	10	1	⊃	Yes	
1,2-Dibromo-3-chloropropane	20	ug/L	10	,	⊃	Yes	
1,2-Dibromoethane	20	ng/L	10		⊃	Yes	
Dichlorodifluoromethane	20	ug/L	10		⊃	Yes	
1,2-Dichlorobenzene	10	ng/L	10	ı	⊃	Yes	
1,3-Dichlorobenzene	10	ng/L	10		⊃	Yes	
1,4-Dichlorobenzene	10	ug/L	10	ı	⊃	Yes	
1,1-Dichloroethane	10	ug/L	10	ì	⊃	Yes	
1,2-Dichloroethane	10	ng/L	10	1	⊃	Yes	
1,1-Dichloroethene	10	ng/L	10		⊃	Yes	
cis-1,2-Dichloroethene	10	ng/L	10	1	⊃	Yes	

																													.20			
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ם	⊃	ח	ח	ı	D	n	-	n	ם	⊃	ח	n	ח	ב	ם	⊃	Þ	ם	ם	T)	ם	⊃	ם	ם	D	D	כ	D	ם	⊃	t	
1	,	Ċ	ı	,	i,		_	,	•	ı	•	1	·	j	ì	í	ı	1	i	1	1		1		1	1	ı	i		ı	ı	î
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
10	10	10	10	646	10	100	9.9	10	200	20	20	10	20	20	10	10	200	200	10	10	20	20	20	20	10	10	10	20	10	10	1160	66.4
trans-1,2-Dichloroethene	1,2-Dichloropropane	cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	Ethylbenzene	Freon 113	2-Hexanone	Isopropylbenzene	p-Isopropyltoluene	Methyl Acetate	Methyl Bromide	Methyl Chloride	Methylcyclohexane	Methylene chloride	4-Methyl-2-pentanone(MIBK)	Methyl Tert Butyl Ether	Styrene	Tert-Amyl Alcohol	Ter-Butyl Alcohol	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Tetrahydrofuran	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Trichlorofluoromethane	1,2,4-Trimethylbenzene	Vinyl chloride	m,p-Xylene	o-Xylene

Sample ID: FA42237-7

Sample location: BMSMC, Humacao, PR Sampling date: 3/20/2017 Matrix: AQ - Trip Blank Water

Analyte Name	Result	Units Diluti	Dilution Factor	Lab Flag	Validation	Reportable	
Acetone	25	ng/L	1.0	1	n	Yes	
Benzene	1.0	ng/L	1.0	•	-	Yes	
Benzyl Chloride	2.0	ng/L	1.0	•	Ω	Yes	
Bromochloromethane	1.0	ng/L	1.0	ŧ	n	Yes	
Bromodichloromethane	1.0	ng/L	1.0	1	n	Yes	
Bromoform	1.0	ng/L	1.0	,	n	Yes	
1,3-Butadiene	2.0	ng/L	1.0	•	n	Yes	
2-Butanone (MEK)	2.0	ng/L	1.0	,	_	Yes	
Carbon disulfide	2.0	1/Bn	1.0	•	D	Yes	
Carbon tetrachloride	1.0	ng/L	1.0	•	- In	Yes	
Chlorobenzene	1.0	ng/L	1.0	1	n	Yes	
Chloroethane	2.0	ng/L	1.0	1	n	Yes	
Chloroform	1.0	ng/L	1.0	ı	O	Yes	
Cyclohexane	1.0	ng/L	1.0		n	Yes	
Dibromochloromethane	1.0	ng/L	1.0	1	n	Yes	
1,2-Dibromo-3-chloropropane	2.0	ng/L	1.0	ĭ	ח	Yes	
1,2-Dibromoethane	2.0	ng/L	1.0	ı	Ω	Yes	
Dichlorodifluoromethane	2.0	ng/L	1.0	1	Ω	Yes	
1,2-Dichlorobenzene	1.0	ng/L	1.0	ı	Ω	Yes	
1,3-Dichlorobenzene	1.0	ng/L	1.0	ř.	n	Yes	
1,4-Dichlorobenzene	1.0	ng/L	1.0	i	⊃	Yes	
1,1-Dichloroethane	1.0	ng/L	1.0	ŝ	D	Yes	
1,2-Dichloroethane	1.0	ng/L	1.0	· ·	⊃	Yes	
1,1-Dichloroethene	1.0	ng/L	1.0	1	⊃	Yes	
cis-1,2-Dichloroethene	1.0	ng/L	1.0		D	Yes	

Sample ID: FA42237-8

Sample location: BMSMC, Humacao, PR Sampling date: 3/20/2017 Matrix: AQ - Trip Blank Water

Analyte Name	Result	Units Dilu	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ng/L	1.0	ı)	Yes
Benzene	1.0	ng/L	1.0	t	⊃	Yes
Benzyl Chloride	2.0	ng/L	1.0	•)	Yes
Bromochloromethane	1.0	ng/L	1.0	,)	Yes
Bromodichloromethane	1.0	ng/L	1.0	٠	⊃	Yes
Bromoform	1.0	ng/L	1.0	•	⊃	Yes
1,3-Butadiene	2.0	ng/L	1.0	•	>	Yes
2-Butanone (MEK)	5.0	ng/L	1.0	1	D	Yes
Carbon disulfide	2.0	ng/L	1.0	,	D	Yes
Carbon tetrachloride	1.0	ng/L	1.0	•	(n)	Yes
Chlorobenzene	1.0	ng/L	1.0	1	n	Yes
Chloroethane	2.0	ng/L	1.0	9	>	Yes
Chloroform	1.0	ng/L	1.0	•	⊃	Yes
Cyclohexane	1.0	ng/L	1.0	•	⊃	Yes
Dibromochloromethane	1.0	ng/L	1.0	3	⊃	Yes
1,2-Dibromo-3-chloropropane	2.0	ng/L	1.0	,		Yes
1,2-Dibromoethane	2.0	ng/L	1.0	1	n	Yes
Dichlorodifluoromethane	2.0	1/8n	1.0	i	n	Yes
1,2-Dichlorobenzene	1.0	ng/L	1.0	τ	n	Yes
1,3-Dichlorobenzene	1.0	ng/L	1.0	•	n	Yes
1,4-Dichlorobenzene	1.0	ng/L	1.0	i	n	Yes
1,1-Dichloroethane	1.0	ng/L	1.0	,	n	Yes
1,2-Dichloroethane	1.0	ng/L	1.0	1	⊃	Yes
1,1-Dichloroethene	1.0	ng/L	1.0	ì	n	Yes
cis-1,2-Dichloroethene	1.0	ng/L	1.0	1	⊃	Yes

U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U) Yes	U Yes	- Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes	U Yes
	1	I.	9	1	t	1	£	E	1		1	,	J.	1	j	E	9	,	te	a	1.	Es	9	ε	1,		1	, I.,	,	ji.	34	ı
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1/8n	ng/L	ng/L	ng/L	ng/L	1/8n	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ug/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
1.0	1.0	1.0	1.0	1.0	1.0	10	1.0	1.0	20	2.0	2.0	1.0	5.0	2.0	1.0	1.0	20	20	1.0	1.0	2.0	2.4	2.0	2.0	1.0	1.0	1.0	2.0	1.0	1.0	2.0	1.0
trans-1,2-Dichloroethene	1,2-Dichloropropane	cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	Ethylbenzene	Freon 113	2-Hexanone	Isopropylbenzene	p-Isopropyltoluene	Methyl Acetate	Methyl Bromide	Methyl Chloride	Methylcyclohexane	Methylene chloride	4-Methyl-2-pentanone(MIBK)	Methyl Tert Butyl Ether	Styrene	Tert-Amyl Alcohol	Ter-Butyl Alcohol	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Tetrahydrofuran	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Trichlorofluoromethane	1,2,4-Trimethylbenzene	Vinyl chloride	m,p-Xylene	o-Xylene

Sample ID: FA42237-4MS

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

Analyte Name	Result	Units Dilut	Jnits Dilution Factor	Lab Flag	Validation	Validation Reportable	
Acetone	107	ng/L	1.0	•		Yes	
Benzene	27.3	ug/L	1.0		6	Yes	
Benzyl Chloride	16.2	ug/L	1.0	.1		Yes	
Bromochloromethane	27.6	ug/L	1.0	,	ι	Yes	
Bromodichloromethane	25.0	ng/L	1.0	ı	•	Yes	
Bromoform	21.5	ng/L	1.0	•	•	Yes	
1,3-Butadiene	1.7	ng/L	1.0	£	•	Yes	
2-Butanone (MEK)	111	ng/L	1.0	ı	•	Yes	
Carbon disulfide	23.9	ng/L	1.0	•	ı	Yes	
Carbon tetrachloride	32.8	ug/L	1.0	1	3	Yes	
Chlorobenzene	26.7	ng/L	1.0	31	ı	Yes	
Chloroethane	28.3	ng/L	1.0	,	•	Yes	
Chloroform	24.6	ng/L	1.0	ı	ı	Yes	
Cyclohexane	27.8	ng/L	1.0	•	ı	Yes	
Dibromochloromethane	22.8	ng/L	1.0	1	·	Yes	
1,2-Dibromo-3-chloropropane	20.0	ng/L	1.0	C:	Ė	Yes	
1,2-Dibromoethane	25.5	ng/L	1.0	,	ì	Yes	
Dichlorodifluoromethane	26.8	ng/L	1.0	ı	1	Yes	
1,2-Dichlorobenzene	26.9	ng/L	1.0	•	1	Yes	
1,3-Dichlorobenzene	27.4	ng/L	1.0	() t		Yes	
1,4-Dichlorobenzene	26.8	ng/L	1.0	£	ı	Yes	
1,1-Dichloroethane	27.9	ng/L	1.0	1	ŧ	Yes	
1,2-Dichloroethane	23.7	ng/L	1.0	1	×	Yes	
1,1-Dichloroethene	27.9	ng/L	1.0	1	·	Yes	
cis-1,2-Dichloroethene	26.4	ng/L	1.0	1	•	Yes	
trans-1,2-Dichloroethene	29.8	ng/L	1.0	•	ı	Yes	

Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
9	1	r	1	ı	¢	ı	٠	1	1	1	1	•	,	1	Ŷ	ı	•		t	7	1	٠	1	ï	1	Ţ	1	1	,	1	9
	•	£	j.j	٠	0		,	Ŀ	3	ı	1.	3	1	ı	, t	I)	9	, t	¢	3	٠	E	3	£	T.	1	r	1	e.	0	
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ug/L	ng/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L
27.0	24.5	24.2	25.9	28.5	104	27.9	27.0	120	24.8	23.1	27.4	26.0	108	25.1	26.5	242	279	22.7	30.7	23.9	26.4	27.9	27.1	26.7	24.7	27.1	33.6	25.5	28.4	49.1	26.4
1,2-Dichloropropane	cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	Ethylbenzene	Freon 113	2-Hexanone	Isopropylbenzene	p-Isopropyltoluene	Methyl Acetate	Methyl Bromide	Methyl Chloride	Methylcyclohexane	Methylene chloride	4-Methyl-2-pentanone (MIBK)	Methyl Tert Butyl Ether	Styrene	Tert-Amyl Alcohol	Ter-Butyl Alcohol	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Tetrahydrofuran	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Trichlorofluoromethane	1,2,4-Trimethylbenzene	Vinyl chloride	m,p-Xylene	o-Xylene

Sample ID: FA42237-4MSD

Sample location: BMSMC, Humacao, PR Sampling date: 3/20/2017 Matrix: Groundwater

	2000						
Analyte Name	Result	Units Dilu	Dilution Factor	Lab Flag	Validation	Validation Reportable	
Acetone	9.66	ng/L	1.0	,	1	Yes	
Benzene	25.3	ng/L	1.0	ı	1	Yes	
Benzyl Chloride	14.5	ng/L	1.0	•	1	Yes	
Bromochloromethane	25.8	ug/L	1.0	•	1	Yes	
Bromodichloromethane	21.9	ng/L	1.0	1	•	Yes	
Bromoform	20.4	ng/L	1.0	ı	1	Yes	
1,3-Butadiene	1.6	ng/L	1.0	•	ı	Yes	
2-Butanone (MEK)	110	ng/L	1.0	ı	1	Yes	
Carbon disulfide	19.0	ng/L	1.0	ı	1	Yes	
Carbon tetrachloride	27.8	ng/L	1.0	1		Yes	
Chlorobenzene	25.6	ng/L	1.0	ı	1	Yes	
Chloroethane	24	ng/L	1.0	ı	1	Yes	
Chloroform	22.9	ng/L	1.0	•	1	Yes	
Cyclohexane	25.1	ng/L	1.0	્રા	4	Yes	
Dibromochloromethane	20.7	ng/L	1.0	ι		Yes	
1,2-Dibromo-3-chloropropane	17.2	ug/L	1.0	ı		Yes	
1,2-Dibromoethane	24.9	ng/L	1.0	•	•	Yes	
Dichlorodifluoromethane	24.0	ng/L	1.0	1		Yes	
1,2-Dichlorobenzene	26.1	ng/L	1.0	ı	1	Yes	
1,3-Dichlorobenzene	25.9	ng/L	1.0			Yes	
1,4-Dichlorobenzene	25.1	ng/L	1.0	ι	r	Yes	
1,1-Dichloroethane	26.0	ng/L	1.0	1		Yes	
1,2-Dichloroethane	22.5	ng/L	1.0	ι	1	Yes	
1,1-Dichloroethene	26.0	ng/L	1.0	ŧ	ı	Yes	
cis-1,2-Dichloroethene	24.6	ng/L	1.0	297	1	Yes	
trans-1,2-Dichloroethene	27.4	ng/L	1.0	1		Yes	

1,2-Dichloropropane	24.9	ng/L	1.0	1	1	Yes
cis-1,3-Dichloropropene	21.5	ng/L	1.0			Yes
trans-1,3-Dichloropropene	21.2	ng/L	1.0		i i	Yes
Ethylbenzene	24.7	ng/L	1.0	1	i i	Yes
Freon 113	25.1	ng/L	1.0	v	Ţ	Yes
2-Hexanone	105	ng/L	1.0	e e	ri i	Yes
Isopropylbenzene	26.3	ng/L	1.0		1	Yes
p-Isopropyltoluene	25.3	ng/L	1.0	,		Yes
Methyl Acetate	125	ng/L	1.0	1	1	Yes
Methyl Bromide	24.8	ng/L	1.0	,	4	Yes
Methyl Chloride	20.7	ng/L	1.0	r	1	Yes
Methylcyclohexane	25.1	ng/L	1.0	4	1	Yes
Methylene chloride	24.4	ng/L	1.0	4	T.	Yes
4-Methyl-2-pentanone(MIBK)	108	ng/L	1.0		r	Yes
Methyl Tert Butyl Ether	24.2	ng/L	1.0		٠,	Yes
Styrene	24.7	ng/L	1.0	ï	1	Yes
Tert-Amyl Alcohol	246	ug/L	1.0		r.	Yes
Ter-Butyl Alcohol	597	ng/L	1.0		24	Yes
1,1,2,2-Tetrachloroethane	22.1	ng/L	1.0	1.	Ŧ	Yes
Tetrachloroethene	29.5	ng/L	1.0	£1	60	Yes
Tetrahydrofuran	22.5	ng/L	1.0	9	9	Yes
Toluene	25.0	ng/L	1.0		ï	Yes
1,2,3-Trichlorobenzene	27.1	ng/L	1.0	ı.	1	Yes
1,2,4-Trichlorobenzene	26.4	ng/L	1.0		ā	Yes
1,1,1-Trichloroethane	24.7	ug/L	1.0	*:	1	Yes
1,1,2-Trichloroethane	23.6	ng/L	1.0	1	1	Yes
Trichloroethene	26.3	ng/L	1.0	,	ï	Yes
Trichlorofluoromethane	29.2	ng/L	1.0		i	Yes
1,2,4-Trimethylbenzene	23.8	ng/L	1.0	1	ă	Yes
Vinyl chloride	25.1	ng/L	1.0			Yes
m,p-Xylene	46.1	ng/L	1.0		r.	Yes
o-Xylene	24.8	ng/L	1.0	1	71	Yes

Project Number:_	FA42237
Date:	March_20,_2017
Shipping date:	_March_20,_2017
EPA Region:	2
-	

REVIEW OF VOLATILE ORGANIC PACKAGE Low/Medium Volatile Data Validation

The following guidelines for evaluating volatile organics were created to delineate required validation actions. This document will assist the reviewer in using professional judgment to make more informed decision and in better serving the needs of the data users. The sample results were 2. ıs e d

assessed according to USEPA data validation gu precedence: USEPA Hazardous Waste Support Se Low/Medium Volatile Data Validation. July, 2015. listed on the data review worksheets are from the proted.	juidance documents in the following order ection SOP No. HW-33A Revision 0 SOM0 5. The QC criteria and data validation acti	r of 12.2. ions
The hardcopied (laboratory name)AccutestOrlar has been reviewed and the quality control and performance vocas included:	ando data package receiormance data summarized. The data review	ived / for
Lab. Project/SDG No.:FA42237 No. of Samples: _10_(VOA_TCL_list)	Sample matrix:Groundwater	-
Trip blank No.:FA42237-7;_ FA42237-8 Field blank No.:FA42237-2 Equipment blank No.:FA42237-1 Field duplicate No.:	.,,	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits	
_OverallComments:VOA_from_the_special_list_(_(SW846_8260C)	
Definition of Qualifiers:		====
J- Estimated results R- Rejected data Reviewer: Aud Mark	U- Compound not detected UJ- Estimated nondetect	
Date:May_7,_2017		

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
	100 A	
-		

All criteria were met _	X	
Criteria were not met		
and/or see below		

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
				5
All samples ana	lyzed within method red	commended holding. Sa	amples p	roperly preserved.

Note:

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 3.2 - 3.6° C - OK

Actions

Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, T = 4°C \pm 2°C), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (J-) and non-detected compounds as estimated (UJ).

Non-aqueous samples

- a. If there is no evidence that the samples were properly preserved $\{T < -7^{\circ}C \text{ or } T = 4^{\circ}C \pm 2^{\circ}C \text{ and preserved with NaHSO}_4\}$, but the samples were analyzed within the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.
- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

			Action		
Matrix	Preserved Criteria	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds	
			3.7	110	
	No	≤ 7 days	No g	ualification	
Aqueous	No	> 7 days	Ţ,	R	
	Yes	_≤ 14 days	No qualification		
	Yes	> 14 days	J	R	
	No	≤ 14 days	J	Professional judgment. UJ or R	
Non-Aqueous	Yes	≤ 14 days	No qualification		
	Yes/No	> 14 days	J	R	
TCLP/SPLP	Yes	≤ 14 days	No q	ualification	
TCLP/SPLP	No	≥ 14 days	J	R	

TCLP SPLP	ZHE performed within the 14-day technical holding time	No qu	alification
TCLP/SPLP	ZHE performed outside the 14-day technical holding time	J	R
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed within 7 days	No qualification	
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed outside 7 days	J	R
Sample temperature outside $4^{\circ}C \pm 2^{\circ}C$ upon receipt at the laboratory		Use profess	ional judgment
Holding times g	rossly exceeded	Ţ	R

All criteria were met _	_X
Criteria were not met see below.	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

__X___ The BFB performance results were reviewed and found to be within the specified criteria.
__X___ BFB tuning was performed for every 12 hours of sample analysis.

NOTES: All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/175, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

Note: State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

•	I judgment to determine whomass calibration compound.	ether associated data should be q	ualified based on the
List	the	samples	affected:
If mass calibration	n is in error, all associated d	ata are reiected.	

All criteria were met _	
Criteria were not met	
and/or see below	X

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	03/28/17
Dates of continuing (initial) calibration:	_03/28/17
Dates of continuing calibration:	03/29/17;_03/31/17;_04/01/17
Dates of ending calibration:03/28/17	7;_03/29/17;_03/31/17;_04/01/17
Instrument ID numbers:	GCMSM
Matrix/Level:	_Aqueous/low

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, <u>%D,</u> r	COMPOUND	SAMPLES AFFECTED	
GCMSM					
03/28/17	icv4065-5	25.5	Acetone^	FA42237-1 to -5; -7; -8; -4MS/-4MSD; -6; -6MS/-6MSD	
03/29/17 C	CC4065	-29.7	Carbon tetrachloride	FA42237-1 to -5;	
		-25.5	Tetrachloroethene	-7; -8; -4MS/-4MSD	
		20.4	1,2-dibromo-3-chloropropane^		
		-21.4	1,2,3-trichlorobenzene *		
03/31/17	cc4065-5	-29.4	Carbon tetrachloride	FA42237-6	
		-20.7	Tetrachloroethene		
		-20.7	1,2-dibromo-3-chloropropane^		
03/31/17	ECC4065-5	-56.7	Tetrachloroethene		
04/01/17	cc4065-5	26.4	1,3-butadiene	FA42237-6MS/-	
		-29.8	Trichlorotrifluoromethane^	MSD	
		-21.9	Freon 113 [^]		
		-36.0	Carbon tetrachloride		
		-26.6	Tetrachloroethene		
		-20.3	1,1,2,2-tetrachloroethane^		

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the method and validation guidance document required performance criteria except for the cases described in this document. Closing calibration check verification included in data package.

^Analytes not meeting the % difference method performance criteria in the initial/continuing calibration verification but within the guidance document performance criteria. No qualification performed.

Analytes not meeting the % difference method performance criteria and the guidance document performance criteria in the initial/continuing calibration verification were qualified as estimated (J or UJ) in affected samples.

Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve.

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

Analyte	Minimum	Maximum %RSD	Opening Maximum %D¹	Closing Maximum %D
•	RRF			
Dichlorodifluoromethane	0.010	25.0	±40.0	±50.0
Chloromethane	0.010	20.0	±30.0	±50.0
Vinyl chloride	0.010	20.0	±25.0	±50.0
Bromomethane	0.010	40.0	±30.0	±50.0
Chloroethane	0.010	40.0	±25.0	±50.0
Trichlorofluoromethane	0.010	40.0	±30.0	±50.0
1.1-Dichloroethene	0.060	20.0	≐20.0	±25.0
1.1.2-Trichloro-1.2.2-trifluoroethane	0.050	25.0	±25.0	±50.0
Acetone	0.010	40.0	±40.0	±50.0
Carbon disulfide	0.100	20.0	±25.0	±25.0
Methyl acetate	0.010	40.0	±40.0	±50.0
Methylene chloride	0.010	40.0	±30.0	±50.0
trans-1.2-Dichloroethene	0.100	20.0	±20.0	±25.0
Methyl tert-butyl ether	0.100	40.0	±25.0	±50.0
1.1-Dichloroethane	0.300	20.0	±20.0	±25.0
cis-1.2-Dichloroethene	0.200	20.0	±20.0	±25.0
2-Butanone	0.010	40.0	±40.0	±50.0
Bromochloromethane	0.100	20.0	±20.0	±25.0
Chloroform	0.300	20.0	±20.0	±25.0
1.1.1-Trichloroethane	0.050	20.0	±25.0	±25.0
Cyclohexane	0.010	40.0	±25.0	±50.0
Carbon tetrachloride	0.100	20.0	±25.0	±25.0
Benzene	0.200	20.0	±20.0	±25.0
1.2-Dichloroethane	0.070	20.0	±20.0	±25.0
Trichloroethene	0.200	20.0	≐20.0	±25.0
Methylcyclohexane	0.050	40.0	±25.0	±50.0
1.2-Dichloropropane	0.200	20.0	±20.0	±25.0
Bromodichloromethane	0.300	20.0	±20.0	±25.0
cis-1.3-Dichloropropene	0.300	20.0	±20.0	±25.0
4-Methyl-2-pentanone	0.030	25.0	±30.0	±50.0
Toluene	0.300	20.0	±20.0	±25.0
trans-1.3-Dichloropropene	0.200	20.0	±20.0	±25.0
1.1.2-Trichloroethane	0.200	20.0	±20.0	±25.0
Tetrachloroethene	0.100	20.0	±20.0	±25.0
2-Hexanone	0.010	40.0	≐40.0	±50.0
Dibromochloromethane	0.200	20.0	±20.0	±25.0
1.2-Dibromoethane	0.200	20.0	±20.0	±25.0
Chlorobenzene	0.400	20.0	±20.0	±25.0
Ethylbenzene	0.400	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum
m.p-Xylene	0.200	20.0	=20.0	±25.0
o-Xylene	0.200	20.0	±20.0	±25.0
Styrene	0.200	20.0	±20.0	±25,0
Bromoform	0.100	20.0	±25.0	±50.0
Isopropylbenzene	0.400	20.0	±25.0	±25.0
1.1.2.2-Tetrachloroethane	0.200	20.0	=25.0	±25.0
1.3-Dichlorobenzene	0.500	20.0	±20.0	±25,0
1.4-Dichlorobenzene	0.600	20.0	=20.0	±25,0
1.2-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1.2-Dibromo-3-chloropropane	0.010	25.0	±30.0	±50.0
1.2.4-Trichlorobenzene	0.400	20,0	±30.0	±50.0
1.2.3-Trichlorobenzene	0.400	25.0	±30.0	±50,0
Deuterated Monitoring Compound	2 - 24		2.0	
Vinyl chloride-da	0.010	20.0	=30.0	±50.0
Chloroethane-ds	0.010	40.0	±30,0	±50,0
1.1-Dichloroethene-de	0.050	20.0	±25.0	±25,0
2-Butanone-ds	0.010	40.0	±40.0	±50.0
Chloroform-d	0,300	20.0	±20.0	±25.0
1.2-Dichloroethane-d4	0.060	20.0	±25.0	±25.0
Benzene-do	0.300	20.0	=20.0	±25,0
1.2-Dichloropropane-de	0,200	20.0	±20.0	±25.0
Toluene-ds	0.300	20.0	±20.0	±25,0
trans-1.3-Dichloropropene-da	0.200	20.0	±20.0	±25,0
2-Hexanone-ds	0.010	40.0	±40.0	±50.0
1.1.2.2-Tetrachloroethane-da	0.200	20.0	±25.0	±25.0
1.2-Dichlorobenzene-d4	0.400	20,0	±20.0 _	±25.0

If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
 - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
 - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
 - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
 - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
 - i. Qualify detects for that compound(s) as estimated (J).
 - ii. Qualify non-detected volatile target compounds using professional iudoment.
 - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
 - i. Qualify detects outside of the linear portion of the curve as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. No qualifiers are required for volatile target compounds that were not detected.
 - c. If the low-point of the curve is outside of the linearity criteria:
 - Qualify low-level detects in the area of non-linearity as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

Note: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria	Action		
Criteria	Detect	Non-detect Use professjonal judgment R	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R		
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF - Minimum RRF in Table - for target analyte	Use professional judgment J+ oi R	R	
RRF > Minimum RRF in Table for target analyte	No qualification	No qualification	
°oRSD → Maximum °oRSD in Table for target analyte	J	Use professional judgment	
°∘RSD ± Maximum °∘RSD in Table for target analyte	No qualification	No qualification	

All criteria were met
Criteria were not met
and/or see belowX

Continuing Calibration Verification (CCV)

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the mid-point standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table). If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
 - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
 - For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
 - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.

f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria for Opening Criteria for		Action		
CCZ.	Closing CCV	Detect	Non-detect	
CCV not performed at required frequency	CCV not performed at required frequency	Use professional gudgment R	Use professional judgment R	
CCV not performed at specified concentration	at specified concentration	Use professional judgment	Use professional judgment	
RRF in Table 2 for target analyte	RRI - Minimum RRF in Table - for target analyte	Use professional judement For R	R	
RRF / Minimum RRF in Table 2 for target analyte	RRE Minimum RRE in Table for target analyte	No qualification	No qualification	
oD outside the Opening Maximum oD limits in Table 2 for target analyte	"aD outside the Closing Maximum "aD limits in Table for target analyte	,t	U	
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	"6D within the inclusive Closing Maximum "6D limits in Table —for target analyte	No qualification	No qualification	

All criteria were met	
Criteria were not met	
and/or see belowX	_

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0 \,\mu\text{g/L}$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0 \,\mu\text{g/kg}$ for soil matrices.

Laboratory blanks

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_target_analyt	e_detected_in_	 method_blanks		

Field/Equipment/Trip blank

If field or trip blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

DATE ANALYZED	LAB ID	LEVEL/ Matrix	COMPOUND	CONCENTRATION UNITS
			eld/equipment_blanks_analya Farget_analytes_detected_in	
1000		Aq./low Aq./low	TolueneToluene	_3.5_ug/l _2.4_ug/l

Note: Toluene not detected in corresponding sample batch. No qualification required.

Sample FA42237-7 identified as TB032017NR in c-o-c form an as EB032017NR in the analysis report.

All criteria were metX_	_
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Note

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	€ CRQL *	< CRQL*	Report CRQL value with a U
	CKQL	≥ CRQL*	No qualification required
Method.		< CRQL*	Report CRQL value with a U
Storage, Field,		≥ CRQL® and ≤	Report blank value for sample
Trip.	> CRQL *	blank concentration	concentration with a U
TCLP/SPLP		≥ CRQL* and ≥	No qualification required
LEB.		blank concentration	140 quannearon required
Instrument	= CRQL*	≤ CRQL*	Report CRQL value with a U
	- CRQL	CRQL*	No qualification required
	Gross	Detects	Report blank value for sample
	contamination	Delects	concentration with a U

^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
	l				

All criteria were met _	Χ_	_
Criteria were not met		
and/or see below		

DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

DMC	%R for Water Sample	%R for Soil Sample
Vinyl chloride-d3	60-135	30-150
Chloroethane-d5	70-130	30-150
1.1-Dichloroethene-d2	60-125	45-110
2-Butanone-d5	40-130	20-135
Chloroform-d	70-125	40-150
1.2-Dichloroethane-d4	70-125	70-130
Benzene-d6	70-125	20-135
1.2-Dichloropropane-d6	70-120	70-120
Toluene-d8	80-120	30-130
trans-1.3-	60-125	30-135
Dichloropropene-d4		
2-Hexanone-d5	45-130	20-135
1.1.2.2-	65-120	45-120
Tetrachloroethane-d2		
1.2-Dichlorobenzene-d4	80-120	75-120

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

Sample ID	Date	to meet the recovery lim DMCs	% Recovery	Action	
					·

Note: DMCs recoveries within the laboratory required control limits and within the guidance document performance criteria (80 – 120). Other non-deuterated surrogates added to the samples within laboratory control limits.

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed.

Action:

- 1. For any recovery greater than the upper acceptance limit:
 - a. Qualify detected associated volatile target compounds as estimated high (J+).
 - b. Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit:
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- 6. If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary

	Action				
Criteria	Detect Associated Compounds	Non-detected Associated Compounds			
° oR = 10° o	J-	R			
10° o ≤ ° oR · Lower Acceptance Limit	J-	UJ			
Lower Acceptance Limit ≤ ° ∘R ≤ Upper Acceptance Limit	No qualification	No qualification			
° ₀R → Upper Acceptance Limit	J÷	No qualification			

TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS

Vinyl chloride-ds (DMC-1)	Chloroethane-ds (DMC-2)	1,1-Dichloroethene-d2 (DMC-3)
Vinyl chloride	Dichlorodifluoromethane Chloromethane Bromomethane Chloroethane Carbon disulfide	trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1-Dichloroethene
2-Butanone-ds (DMC-4)	Chloroform-d (DMC-5)	1,2-Dichloroethane-d4 (DMC-6)
Acetone	1.1-Dichloroethane	Trichlorofluoromethane
2-Butanone	Bromochloromethane Chloroform Dibromochloromethane Bromoform	1.1.2-Trichloro-i.2.2-trifluoroethane Methyl acetate Methylene chloride Methyl-tert-butyl ether
		1.1.1-Trichloroethane Carbon tetrachloride 1.2-Dibromoethane 1.2-Dichloroethane
Benzene-ds (DMC-7)	1.2-Dichloropropane-da (DMC-8)	Toluene-ds (DMC-9)
Benzene	Cyclohexane Methylcyclohexane 1.2-Dichloropropane Bromodichloromethane	Trichloroethene Tolnene Tetrachloroethene Ethylbenzene o-Xylene m.p-Xylene Styrene Isopropylbenzene
trans-1,3-Dichloropropene-d4 (DMC-10)	2-Hexanone-ds (DMC-11)	1,1,2,2-Tetrachloroethane-d2 (DMC-12)
cis-1.3-Dichloropropene trans-1.3-Dichloropropene 1.1.2-Trichloroethane	4-Methyl-2-pentanone 2-Hexanone	1.1.2.2Tetrachloroethane 1.2-Dibromo-3-chloropropane
1,2-Dichlorobenzene-d4 (DMC-13) Chlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Trichlorobenzene 1,2,3-Trichlorobenzene		

All criteria were metX	_
Criteria were not met	
and/or see below	į

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be gualified.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

25

	Sample ID:_FA42237-4MS/-4MSD Sample ID:_FA42237-6MS/-6MSD								-	water water
The QC reported here applies to the following samples: FA42237-1, FA42237-2, FA42237-3, FA42237-4, FA42237-5,						A42237-			6 8260C	
Compound	FA422 ug/l	37-4 Q	Spike ug/l	MS ug/l	MS %	Spike ug/j	MSD ug/l	MSD %	RPD	Limits Rec/RPD

1.7

1.3-Butadiene

Note: MS/MSD % recovery and RPD within laboratory control limits except for the cases described in this document.

25

1.6

6

65-135/31

Actions:

ND

• 1,3-butadiene results rejected (R) in sample FA42237-4.

^{* =} Outside of Control Limits.

The QC reported here applies to the following samples: FA42237-6

Method: SW846 8260C

	FA422	37-6	Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
1,3-Butadiene	ND		250	162	65	250	143	57*	12	65-135/31
Carbon Disulfide	ND		250	227	91	250	179	72	24*	66-148/23
Ethylbenzene	646		250	791	58* a	250	765	48* a	3	81-121/14

⁽a) Outside control limits due to high level in sample relative to spike amount.

Note: MS/MSD % recovery and RPD within laboratory control limits except for the cases described in this document. No qualifications made based on RPD outside the laboratory control limits, professional judgment. No qualifications made for anlytes having either the MS or the MSD % recovery outside the laboratory control limits, professional judgment.

Actions:

 Ethylbenzene results not qualified. Outside control limits due to high level in sample relative to spike amount.

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

 No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{* -} outside laboratory control limits.

All criteria were met	_X_
Criteria were not met	
and/or see below	- 00

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? **Yes** or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

LCS ID	COMPOUND	% R	QC LIMIT
Recoveries(blank_spike)_	within_laboratory_control_lin	mits	
		MU-190 20: 10.32	

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were met Criteria were not met and/or see belowN/A
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
		•			SD % recovery RPD used to tes detected at concentration

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met _	_x
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal standard area within laboratory control limits.

Action:

- 1. If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
 - Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or midpoint standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

	Action		
Criteria	Detected Associated Compounds*	Non-detected Associated Compounds*	
Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J-	No qualification	
Area counts 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J+	R	
Area counts ≥ 50% but ≤ 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification		
RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	R **	R	
RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification		

^{*} For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf ** Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

		All criteria were metX Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
	T [opening Continuing Calibration Verificat	ompounds within ± 0.06 RRT units of the tion (CCV) or mid-point standard from the $\underline{\text{Yes}}$? or No?
List compoun	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
		·
		<u> </u>
spectrum fror calibration)] m	n the associated calibration standard (oper nust match according to the following criteria All ions present in the standard mass s 10% must be present in the sample spec	pectrum at a relative intensity greater than trum.
b.		st agree within $\pm 20\%$ between the standard with an abundance of 50% in the standard abundance must be between 30-70%).
C.	•	sample mass spectrum, but not present in lated by a reviewer experienced in mass
List compound	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
		·

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

		-	
1	ist	- 11	lCs

Sample ID	Compound	Sample ID	Compound
	=======================================	=======================================	=======================================

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene

- isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met _	_X	_
Criteria were not met		
and/or see below		

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

Criteria	Action				
	Detected Associated Compounds	Non-detected Associated Compounds			
% Moisture < 70.0	No qualification				
70.0 < % Moisture < 90.0	J	UJ			
% Moisture > 90.0	J R				

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

FA42237-3

MTBE

RF = 0.812

[] = (16907)(50)/(0.812)(899129) = 1.16 ppb Ok

	All criteria were metX Criteria were not met and/or see below
Percent Solids	
List samples which have ≥ 70 % solids	

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
FA42237-6	10 x	Ethylbenzene and the xylenes outside calibration range
	-	

		All criteria were metX Criteria were not met and/or see below
OTHER ISSUE	S	
A. System	n Performance	
List samples qu	ualified based on the degradation of system p	erformance during simple analysis:
Sample ID	Comments	Actions
No_degradatio	on_of_system_performance_observed	
Action:		
degraded durin	nal judgment to qualify the data if it is de ig sample analyses. Inform the Contract La dation of system performance which significar	boratory Program COR any action as a
B. Overall	Assessment of Data	
List samples qu	alified based on other issues:	
Sample ID	Comments	Actions
	_issues_observed_that_require_qualification this_documentResults_are_valid_and_can	
Note:		

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

EXECUTIVE NARRATIVE

SDG No: FA42237 Laboratory: Accutest, Orlando Analysis: SW846-8270D Number of Samples: 8 Scan/18 SIM

Location: BMSMC, Humacao, PR

Jo. 14.

SUMMARY: Eight (8) samples were analyzed for semivolatile organic compounds following method SW846-8270D. Eighteen (18) samples were analyzed for selected PAHs and 1,4-Dioxane by SW846-8270D using the selective ion monitoring (SIM) technique; samples were analyzed separately for each analyte group. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 — Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues: None
Major: None
Minor: None
Critical findings: None

Critical findings: None
Major findings: None

Minor findings:

1. Initial and continuing calibration verifications meet the method and guidance document required performance criteria except for the cases described in the Data Review

Worksheet.

Analytes with % difference outside the method performance criteria but within guidance document performance criteria in the continuing calibration verification guidance document were not qualified.

No closing calibration verification included in data package for instrument GCMS4D (SCAN). No action taken, professional judgment.

Analytes not meeting the initial and continuing % difference in the initial and continuing calibration verification criteria qualified as estimated (J or UJ) in affected samples.

Instrument GCMSL used for the analysis of QC samples. QC samples not qualified.

2. DMCs meet the required criteria in all samples analyzed except for the cases described in the Data Review Worksheet. Non-deuterated surrogates added to the samples and were within laboratory recovery limits except in the cases described in the Data Review Worksheet;

Surrogate standards not recovered in samples FA42237-4 and FA42237-5 (SIM- 1,4-dioxane) due to dilution. No action taken, professional judgment. Surrogates recovered in the undiluted sample.

Surrogate recoveries in samples analyzed by SW846-8270D (SIM) were corrected for the concentration of the surrogate spiked. The correction is due to the following: the laboratory split batches between 8270 and 8270SIM. The surrogates were spiked at 8270 levels,

which is 5x higher than what the laboratory 8270SIM setup expects. SIM surrogates recoveries were divided by 5. Calculations were spot checked.

3. MS/MSD % recovery and RPD in sample FA42237-4 within laboratory control limits except for the cases described in the Data Review Worksheet.

Results for samples having either MS or the MSD outside the laboratory control limits are not qualified, professional judgment.

No qualification made based on RPD results outside laboratory control limits; professional judgment.

Samples with MS/MSD % recovery high are not qualified, professional judgment. No positive results associated with sample batch.

Results for 1,4-dioxane not qualified, MS/MSD % recovery outside control limits due to high level in sample relative to spike amount.

4. Several analytes (62 %) recovered high in the blank spike analyzed on 03/29/17. No action taken, analytes not detected in sample batch above the reporting limit.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

Rafael defaut

SAMPLE ORGANIC DATA SAMPLE SUMMARY

.

Sample ID: FA42237-1

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: AQ - Equipment Blank

METHOD: 8270D

Analyte Name	Result	Units I	Dilution Factor	Lab Flag	Validation	Reportable
Caprolactam	9.8	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	4.9	ug/l	1	***	U	Yes
2-Chlorophenol	4.9	ug/l	1	-	U	Yes
2,4-Dichlorophenol	4.9	ug/l	1	_ R	U	Yes
2,4-Dimethylphenol	4.9	ug/l	1	-	U	Yes
2,4-Dinitrophenol	25	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	9.8	ug/l	1	-	U	Yes
2-Methylphenol	4.9	ug/l	1	-	IJ	Yes
3&4-Methylphenol	4.9	ug/l	1	-	U	Yes
2-Nitrophenol	4.9	ug/l	1	-	U	Yes
4-Nitrophenol	25	ug/l	1	-	IJ	Yes
Pentachlorophenol	25	ug/l	1	-	U	Yes
Phenol	4.9	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	4.9	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	4.9	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	4.9	ug/l	1	-	U	Yes
Acenaphthene	4.9	ug/l	1	-	U	Yes
Acenaphthylene	4.9	ug/l	1	-	U	Yes
Acetophenone	4.9	ug/l	1	-	U	Yes
Anthracene	4.9	ug/l	1	-	U	Yes
Atrazine	4.9	ug/l	1	-	U	Yes
Benzaldehyde	25	ug/l	1	-	U	Yes
Benzo(a)anthracene	4.9	ug/l	1	-	U	Yes
Benzo(a)pyrene	4.9	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	4.9	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	4.9	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	4.9	ug/l	1	-	U	Yes
1,1'-Biphenyl	4.9	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	4.9	ug/l	1	-	U	Yes
Butyl benzyl phthalate	4.9	ug/l	1	-	U	Yes
Carbazole	4.9	ug/l	1	-	U	Yes
4-Chloroaniline	4.9	ug/l	1	-	UJ 🗸	Yes
bis(2-Chloroethoxy)methane	4.9	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	4.9	ug/l	1	•	U	Yes
bis (2-Chloro is opropyl) ether	4.9	ug/l	1	-	U	Yes

2-Chloronaphthalene	4.9	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	4.9	ug/l	1	-	U	Yes
Chrysene	4.9	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	4.9	ug/l	1	-	U	Yes
Dibenzofuran	4.9	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	4.9	ug/l	1	-	UJ 🗸	Yes
Diethyl phthalate	4.9	ug/l	1	-	U	Yes
Dimethyl phthalate	4.9	ug/l	1	-	Ų	Yes
Di-n-butyl phthalate	4.9	ug/l	1		U	Yes
Di-n-octyl phthalate	4.9	ug/l	1	_	U	Yes
2,4-Dinitrotoluene	4.9	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	4.9	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	4.9	ug/l	1	-	Ų	Yes
Fluoranthene	4.9	ug/l	1		U	Yes
Fluorene	4.9	ug/l	1	-	Ų	Yes
Hexachlorobenzene	4.9	ug/l	1	-	U	Yes
Hexachlorobutadiene	4.9	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	4.9	ug/l	1	-	U	Yes
Hexachloroethane	4.9	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	4.9	ug/l	1	-	Ų	Yes
Isophorone	4.9	ug/l	1	-	U	Yes
2-Methylnaphthalene	4.9	ug/l	1		U	Yes
2-Nitroaniline	4.9	ug/l	1	-	U	Yes
3-Nitroaniline	4.9	ug/l	1	-	(UJ)	Yes
4-Nitroaniline	4.9	ug/l	1	-	U	Yes
Nitrobenzene	4.9	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	4.9	ug/l	1	120	U	Yes
N-Nitrosodiphenylamine	4.9	ug/l	1	-	U	Yes
Phenanthrene	4.9	ug/l	1		U	Yes
Pyrene	4.9	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	4.9	ug/l	1	-	U	Yes
METHOD	0270D (CIA	4)				
Benzo(a)anthracene	8270D (SIN 0.20		1		U	Yes
Benzo(a)pyrene	0.20	ug/l ug/l	1		U	Yes
Benzo(b)fluoranthene	0.20	ug/l	1		U	Yes
Benzo(k)fluoranthene	0.20	ug/i ug/l	1	-	U	Yes
Chrysene	0.20	ug/I ug/I	1	-	U	Yes
Dibenzo(a,h)anthracene	0.20		1		U	Yes
1,4-Dioxane	0.20	ug/l	1		U	Yes
Indeno(1,2,3-cd)pyrene	0.29	ug/l	1	35.	U	Yes
1-Methylnaphthalene	0.20	ug/l	1		U	Yes
		ug/l		-		
2-Methylnaphthalene	0.98	ug/l	1	-7.5 500	U	Yes
Naphthalene	0.98	ug/l	1	-	U	Yes

4-1-6

Sample ID: FA42237-2

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

ap 2 10 1 1 1 1

Matrix: AQ - Field Blank Water

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Caprolactam	11	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.3	ug/l	1	-	Ų	Yes
2-Chlorophenol	5.3	ug/l	1	-	U	Yes
2,4-Dichlorophenol	5.3	ug/l	1	-	Ų	Yes
2,4-Dimethylphenol	5.3	ug/l	1	-	U	Yes
2,4-Dinitrophenol	26	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	11	ug/l	1	-	U	Yes
2-Methylphenol	5.3	ug/l	1	-	U	Yes
3&4-Methylphenol	5.3	ug/l	1	-	U	Yes
2-Nitrophenol	5.3	ug/l	1	-	U	Yes
4-Nitrophenol	26	ug/l	1	-	U	Yes
Pentachlorophenol	26	ug/l	1	-	U	Yes
Phenol	5.3	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.3	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.3	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.3	ug/l	1	-	U	Yes
Acenaphthene	5.3	ug/l	1	-	U	Yes
Acenaphthylene	5.3	ug/l	1	-	U	Yes
Acetophenone	5.3	ug/l	1	-	U	Yes
Anthracene	5.3	ug/l	1	-	U	Yes
Atrazine	5.3	ug/l	1	-	U	Yes
Benzaldehyde	26	ug/l	1	-	U	Yes
Benzo(a)anthracene	5.3	ug/l	1	-	U	Yes
Benzo(a)pyrene	5.3	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	5.3	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	5.3	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	5.3	ug/l	1	•	U	Yes
1,1'-Biphenyl	5.3	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	5.3	ug/l	1	-	U	Yes
Butyl benzyl phthalate	5.3	ug/l	1	-	U	Yes
Carbazole	5.3	ug/l	1	-	U	Yes
4-Chloroaniline	5.3	ug/l	1	-	UJ	Yes
bis(2-Chloroethoxy)methane	5.3	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	5.3	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	5.3	ug/l	1	-	U	Yes
2-Chloronaphthalene	5.3	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	5.3	ug/l	1	-	U	Yes

Chrysene	5.3	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	5.3	ug/l	1	-	Ų	Yes
Dibenzofuran	5.3	ug/l	1		U	Yes
3,3'-Dichlorobenzidine	5.3	ug/l	1	7.27	UJV	Yes
Diethyl phthalate	5.3	ug/l	1	-	U	Yes
Dimethyl phthalate	5.3	ug/l	1	- 7	U	Yes
Di-n-butyl phthalate	5.3	ug/l	1	-	U	Yes
Di-n-octyl phthalate	5.3	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	5.3	ug/l	1		U	Yes
2,6-Dinitrotoluene	5.3	ug/l	1	-	U	Yes
bis (2-Ethylhexyl) phthalate	5.3	ug/l	1	-	U	Yes
Fluoranthene	5.3	ug/l	1	-5	U	Yes
Fluorene	5.3	ug/l	1	-	U	Yes
Hexachlorobenzene	5.3	ug/l	1		U	Yes
Hexachlorobutadiene	5.3	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	5.3	ug/l	1	-	U	Yes
Hexachloroethane	5.3	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	5.3	ug/l	1	-	U	Yes
Isophorone	5.3	ug/l	1	-	U	Yes
2-Methylnaphthalene	5.3	ug/l	1		U	Yes
2-Nitroaniline	5.3	ug/l	1	-	U	Yes
3-Nitroaniline	5.3	ug/l	1	-	UJ V	Yes
4-Nitroaniline	5.3	ug/l	1	0.00	U	Yes
Nitrobenzene	5.3	ug/l	1	12	U	Yes
N-Nitroso-di-n-propylamine	5.3	ug/l	1		U	Yes
N-Nitrosodiphenylamine	5.3	ug/l	1	-	U	Yes
Phenanthrene	5.3	ug/l	1	-	U	Yes
Pyrene	5.3	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	5.3	ug/l	1		U	Yes
METHOD:	8270D (SIN	۸)				
Benzo(a)anthracene	0.21	ug/l	1		U	Yes
Benzo(a)pyrene	0.21	ug/l	1	-	Ü	Yes
Benzo(b)fluoranthene	0.21	ug/l	1		Ü	Yes
Benzo(k)fluoranthene	0.21	ug/l	1		U	Yes
Chrysene	0.21	ug/l	1	_	U	Yes
Dibenzo(a,h)anthracene	0.21	ug/l	1	-	U	Yes
1,4-Dioxane	0.32	ug/l	1	_	Ü	Yes
Indeno(1,2,3-cd)pyrene	0.32	ug/l	1		U	Yes
1-Methylnaphthalene	1.1	ug/l	1	_	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	12	U	Yes
Naphthalene	1.1	ug/i ug/l	1	100	U	Yes
Napitulalelle	1.1	ug/I	Τ.	-	U	162

germ of the

Sample ID: FA42237-3

0.00

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwater

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Caprolactam	9.8	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	4.9	ug/l	1	-	U	Yes
2-Chlorophenol	4.9	ug/l	1	-	U	Yes
2,4-Dichlorophenol	4.9	ug/l	1	-	U	Yes
2,4-Dimethylphenol	4.9	ug/l	1	-	U	Yes
2,4-Dinitrophenol	25	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	9.8	ug/l	1	-	U	Yes
2-Methylphenol	4.9	ug/l	1	-	U	Yes
3&4-Methylphenol	4.9	ug/l	1	-	U	Yes
2-Nitrophenol	4.9	ug/l	1	-	U	Yes
4-Nitrophenol	25	ug/l	1	-	U	Yes
Pentachlorophenol	25	ug/l	1	-	U	Yes
Phenol	4.9	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	4.9	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	4.9	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	4.9	ug/l	1	-	U	Yes
Acenaphthene	4.9	ug/l	1	-	U	Yes
Acenaphthylene	4.9	ug/l	1	-	U	Yes
Acetophenone	4.9	ug/l	1	-	U	Yes
Anthracene	4.9	ug/l	1	-	U	Yes
Atrazine	4.9	ug/l	1	-	U	Yes
Benzaldehyde	25	ug/l	1	-	U	Yes
Benzo(a)anthracene	4.9	ug/l	1	-	U	Yes
Benzo(a)pyrene	4.9	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	4.9	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	4.9	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	4.9	ug/l	1	-	U	Yes
1,1'-Biphenyl	4.9	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	4.9	ug/l	1	-	U	Yes
Butyl benzyl phthalate	4.9	ug/l	1	-	U	Yes
Carbazole	4.9	ug/l	1	-	U	Yes
4-Chloroaniline	4.9	ug/l	1	-	UJ	Yes
bis(2-Chloroethoxy)methane	4.9	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	4.9	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	4.9	ug/l	1	-	U	Yes
2-Chloronaphthalene	4.9	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	4.9	ug/l	1	-	U	Yes

Chrysene	4.9	ug/l	1	_	U	Yes
Dibenzo(a,h)anthracene	4.9	ug/l	1	-	U	Yes
Dibenzofuran	4.9	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	4.9	ug/l	1	2	UJ 🗸	Yes
Diethyl phthalate	4.9	ug/l	1	-	U	Yes
Dimethyl phthalate	4.9	ug/l	1	-	U	Yes
Di-n-butyl phthalate	4.9	ug/l	1	-	U	Yes
Di-n-octyl phthalate	4.9	ug/l	1		U	Yes
2,4-Dinitrotoluene	4.9	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	4.9	ug/l	1		U	Yes
bis(2-Ethylhexyl)phthalate	4.9	ug/l	1		U	Yes
Fluoranthene	4.9	ug/l	1	-	U	Yes
Fluorene	4.9	ug/l	1	_	U	Yes
Hexachlorobenzene	4.9	ug/l	1	-	U	Yes
Hexachlorobutadiene	4.9	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	4.9	ug/l	1	-	U	Yes
Hexachloroethane	4.9	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	4.9	ug/l	1	-	Ų	Yes
Isophorone	4.9	ug/l	1		U	Yes
2-Methylnaphthalene	4.9	ug/l	1	-	U	Yes
2-Nitroaniline	4.9	ug/l	1	2	U	Yes
3-Nitroaniline	4.9	ug/l	1	-	UJ V	Yes
4-Nitroaniline	4.9	ug/l	1		U	Yes
Nitrobenzene	4.9	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	4.9	ug/l	1	(-)	U	Yes
N-Nitrosodiphenylamine	4.9	ug/l	1	-	U	Yes
Phenanthrene	4.9	ug/l	1	¥1	U	Yes
Pyrene	4.9	ug/l	1		U	Yes
1,2,4,5-Tetrachlorobenzene	4.9	ug/l	1		U	Yes
METHOD: 82	70D (SIM)					
Benzo(a)anthracene	0.20	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.20	ug/l	1		Ü	Yes
Benzo(b)fluoranthene	0.20	ug/l	1		U	Yes
Benzo(k)fluoranthene	0.20	ug/l	1	_	U	Yes
Chrysene	0.20	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.20	ug/l	1	-	U	Yes
1,4-Dioxane	0.29	ug/l	1		U	Yes
Indeno(1,2,3-cd)pyrene	0.20	ug/l	1	-	U	Yes
1-Methylnaphthalene	0.98	ug/l	1	-	U	Yes
2-Methylnaphthalene	0.98	ug/l	1	_	U	Yes
Naphthalene	0.98	ug/l	1		U	Yes
pricerum	3.30	~6/ ¹	-		-	

en e de

Sample ID: FA42237-4

200

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwater

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Caprolactam	9.9	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
2,4-Dichlorophenol	5.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	25	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	9.9	ug/l	1	-	U	Yes
2-Methylphenol	5.0	ug/l	1	-	U	Yes
3&4-Methylphenol	5.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	25	ug/l	1	-	U	Yes
Pentachlorophenol	25	ug/l	1	-	U	Yes
Phenol	5.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	Ŭ	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	5.0	ug/l	1	-	U	Yes
Acenaphthylene	5.0	ug/l	1	-	U	Yes
Acetophenone	5.0	ug/l	1	-	U	Yes
Anthracene	5.0	ug/l	1	-	U	Yes
Atrazine	5.0	ug/l	1	-	U	Yes
Benzaldehyde	25	ug/l	1	-	U	Yes
Benzo(a)anthracene	5.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	5.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	5.0	ug/l	1	-	Ų	Yes
Benzo(g,h,i)perylene	5.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	5.0	ug/l	1	-	Ų	Yes
1,1'-Biphenyl	5.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	5.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	5.0	ug/l	1	-	U	Yes
Carbazole	5.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	UJ ✓	Yes
bis(2-Chloroethoxy)methane	5.0	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	5.0	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	5.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	5.0	ug/l	1	-	U	Yes

4-Chlorophenyl phenyl ether	5.0	ug/l	1		U	Yes
Chrysene	5.0	ug/l	1	2	U	Yes
Dibenzo(a,h)anthracene	5.0	ug/l	1		U	Yes
Dibenzofuran	5.0	ug/l	1	3.50	U s	Yes
3,3'-Dichlorobenzidine	5.0	ug/l	1	12	UJ	Yes
Diethyl phthalate	5.0	ug/l	1		U	Yes
Dimethyl phthalate	5.0	ug/l	1	-	U	Yes
Di-n-butyl phthalate	5.0	ug/l	1		Ü	Yes
Di-n-octyl phthalate	5.0	ug/l	1	_	Ü	Yes
2,4-Dinitrotoluene	5.0	ug/l	1	-	Ü	Yes
2,6-Dinitrotoluene	5.0	ug/l	1		U	Yes
bis(2-Ethylhexyl)phthalate	5.0	ug/l	1	_	U	Yes
Fluoranthene	5.0	ug/l	1	-	U	Yes
Fluorene	5.0	ug/l	1	_	U	Yes
Hexachlorobenzene	5.0	ug/l	1		Ü	Yes
Hexachlorobutadiene	5.0	ug/l	1	_	U	Yes
Hexachlorocyclopentadiene	5.0	ug/l	1		U	Yes
Hexachloroethane	5.0	ug/l	1		U	Yes
Indeno(1,2,3-cd)pyrene	5.0	ug/l	1		U	Yes
Isophorone	5.0	ug/l	1		U	Yes
2-Methylnaphthalene	5.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.0	ug/l	1	_	U	Yes
3-Nitroaniline	5.0	ug/l	1	_	UJ 🗸	Yes
4-Nitroaniline	5.0	ug/l	1	-	U	Yes
Nitrobenzene	5.0	ug/l	1	_	U	Yes
N-Nitroso-di-n-propylamine	5.0	ug/l	1	-	U	Yes
N-Nitrosodiphenylamine	5.0	ug/l	1		U	Yes
Phenanthrene	5.0	ug/l	1		U	Yes
Pyrene	5.0	ug/l	1	-	Ü	Yes
1,2,4,5-Tetrachlorobenzene	5.0	ug/l	1	_	Ü	Yes
2,2,1,5 retraction obetize the	5.0	u _B / 1	-		0	103
METHOD: 8	3270D (SIN	/ 1)				
Benzo(a)anthracene	0.20	ug/l	1	-	U	Yes
Benzo(a)pyrene	0.20	ug/l	1		Ū	Yes
Benzo(b)fluoranthene	0.20	ug/l	1		Ū	Yes
Benzo(k)fluoranthene	0.20	ug/l	1	-	Ü	Yes
Chrysene	0.20	ug/l	1	-	Ü	Yes
Dibenzo(a,h)anthracene	0.20	ug/l	1	-	Ū	Yes
1,4-Dioxane	188	ug/l	25	_	4.	Yes
Indeno(1,2,3-cd)pyrene	0.20	ug/l	1	_	U	Yes
1-Methylnaphthalene	0.99	ug/l	1	-	U	Yes
2-Methylnaphthalene	0.99	ug/l	1		Ū	Yes
Naphthalene	0.99	ug/l	1	-	U	Yes
•		U			_	

Sample ID: FA42237-5

F = 1 F E

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwter

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Caprolactam	9.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	4.8	ug/l	1	-	U	Yes
2-Chlorophenol	4.8	ug/l	1	-	U	Yes
2,4-Dichlorophenol	4.8	ug/l	1	-	U	Yes
2,4-Dimethylphenol	4.8	ug/l	1	-	U	Yes
2,4-Dinitrophenol	24	ug/i	1	-	U	Yes
4,6-Dinitro-o-cresol	9.6	ug/l	1	-	U	Yes
2-Methylphenol	4.8	ug/l	1	-	U	Yes
3&4-Methylphenol	4.8	ug/l	1	-	U	Yes
2-Nitrophenol	4.8	ug/l	1	-	U	Yes
4-Nitrophenol	24	ug/l	1	-	U	Yes
Pentachlorophenol	24	ug/l	1	-	U	Yes
Phenol	4.8	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	4.8	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	4.8	ug/l	1	••	U	Yes
2,4,6-Trichlorophenol	4.8	ug/l	1	-	U	Yes
Acenaphthene	4.8	ug/l	1	-	U	Yes
Acenaphthylene	4.8	ug/l	1	-	U	Yes
Acetophenone	4.8	ug/l	1	-	U	Yes
Anthracene	4.8	ug/l	1	-	U	Yes
Atrazine	4.8	ug/l	1	-	U	Yes
Benzaldehyde	24	ug/l	1	-	U	Yes
Benzo(a)anthracene	4.8	ug/l	1	-	U	Yes
Benzo(a)pyrene	4.8	ug/l	1	-	Ų	Yes
Benzo(b)fluoranthene	4.8	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	4.8	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	4.8	ug/l	1	-	Ų	Yes
1,1'-Biphenyl	4.8	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	4.8	ug/l	1	-	U	Yes
Butyl benzyl phthalate	4.8	ug/l	1	-	U	Yes
Carbazole	4.8	ug/l	1	-	U	Yes
4-Chloroaniline	4.8	ug/l	1	-	UJ V	Yes
bis(2-Chloroethoxy)methane	4.8	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	4.8	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	4.8	ug/l	1	-	U	Yes
2-Chloronaphthalene	4.8	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	4.8	ug/l	1		U	Yes

Chrysene	4.8	ug/l	1	25	U	Yes
Dibenzo(a,h)anthracene	4.8	ug/l	1	2	Ü	Yes
Dibenzofuran	4.8	ug/l	1	_	Ü	Yes
3,3'-Dichlorobenzidine	4.8	ug/l	1	2	נט	Yes
Diethyl phthalate	4.8	ug/l	1		U	Yes
Dimethyl phthalate	4.8	ug/l	1	-	Ü	Yes
Di-n-butyl phthalate	4.8	ug/l	1	2	Ü	Yes
Di-n-octyl phthalate	4.8	ug/l	1	-	Ü	Yes
2,4-Dinitrotoluene	4.8	ug/l	1	_	Ü	Yes
2,6-Dinitrotoluene	4.8	ug/l	1	_	Ü	Yes
bis(2-Ethylhexyl)phthalate	4.8	ug/l	1	-	Ü	Yes
Fluoranthene	4.8	ug/l	1	-	Ū	Yes
Fluorene	4.8	ug/l	1	-	U	Yes
Hexachlorobenzene	4.8	ug/l	1	-	U	Yes
Hexachlorobutadiene	4.8	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	4.8	ug/l	1		U	Yes
Hexachloroethane	4.8	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	4.8	ug/l	1	2	Ü	Yes
Isophorone	4.8	ug/l	1	-	U	Yes
2-Methylnaphthalene	4.8	ug/l	1	1,00	U	Yes
2-Nitroaniline	4.8	ug/l	1	_	U	Yes
3-Nitroaniline	4.8	ug/l	1	-	UJ	Yes
4-Nitroaniline	4.8	ug/l	1	2	U	Yes
Nitrobenzene	4.8	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	4.8	ug/l	1	-	υ	Yes
N-Nitrosodiphenylamine	4.8	ug/l	1	-	U	Yes
Phenanthrene	4.8	ug/l	1	-	U	Yes
Pyrene	4.8	ug/l	1		U	Yes
1,2,4,5-Tetrachlorobenzene	4.8	ug/l	1	-	U	Yes
METHOD:	8270D (SIN	/ 1)				
Benzo(a)anthracene	0.19	ug/i	1		U	Yes
Benzo(a)pyrene	0.19	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	0.19	ug/l	1	2	U	Yes
Benzo(k)fluoranthene	0.19	ug/l	1	-	U	Yes
Chrysene	0.19	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	0.19	ug/l	1	-	U	Yes
1,4-Dioxane	1300	ug/l	200	-	-	Yes
Indeno(1,2,3-cd)pyrene	0.19	ug/l	1	-	U	Yes
1-Methylnaphthalene	0.96	ug/l	1		U	Yes
2-Methylnaphthalene	0.96	ug/l	1	-	U	Yes
Naphthalene	0.96	ug/l	1		U	Yes

Sample ID: FA42237-6

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwater

METHOD: 8270D

METHOD. 6	2/00						
Analyte Name	Result	Units	Dilution Factor	Lab Flag			
Caprolactam	9.9	ug/l	1	-	U	Yes	
4-Chloro-3-methyl phenol	5.0	ug/l	1	-	U	Yes	
2-Chlorophenol	5.0	ug/l	1	-	U	Yes	
2,4-Dichlorophenol	5.0	ug/l	1	-	U	Yes	
2,4-Dimethylphenol	7.6	ug/l	1	-	-	Yes	
2,4-Dinitrophenol	25	ug/l	1	-	U	Yes	
4,6-Dinitro-o-cresol	9.9	ug/l	1	-	U	Yes	
2-Methylphenol	5.0	ug/l	1	-	U	Yes	
3&4-Methylphenol	5.0	ug/l	1	-	U	Yes	
2-Nitrophenol	5.0	ug/l	1	-	U	Yes	
4-Nitrophenol	25	ug/l	1	-	U	Yes	
Pentachlorophenol	25	ug/l	1	-	U	Yes	
Phenol	5.0	ug/l	1	-	U	Yes	
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes	
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes	
2,4,6-Trichlorophenol	5.0	ug/l	1	-	Ų	Yes	
Acenaphthene	5.0	ug/l	1	-	U	Yes	
Acenaphthylene	5.0	ug/l	1	-	U	Yes	
Acetophenone	3.1	ug/l	1	J	J	Yes	
Anthracene	5.0	ug/l	1	-	U	Yes	
Atrazine	5.0	ug/l	1	-	U	Yes	
Benzaldehyde	25	ug/l	1	-	Ų	Yes	
Benzo(a)anthracene	5.0	ug/l	1	-	U	Yes	
Benzo(a)pyrene	5.0	ug/l	1	-	U	Yes	
Benzo(b)fluoranthene	5.0	ug/l	1	-	U	Yes	
Benzo(g,h,i)perylene	5.0	ug/l	1	-	U	Yes	
Benzo(k)fluoranthene	5.0	ug/l	1	-	U	Yes	
1,1'-Biphenyl	5.0	ug/l	1	-	U	Yes	
4-Bromophenyi phenyi ether	5.0	ug/l	1	-	U	Yes	
Butyl benzyl phthalate	5.0	ug/l	1	-	U	Yes	
Carbazole	5.0	ug/l	1	-	U	Yes	
4-Chloroaniline	5.0	ug/l	1	-	UJ		
bis (2-Chloroethoxy) methane	5.0	ug/l	1	-	U	Yes	
bis (2-Chloroethyl) ether	5.0	ug/l	1	-	U	Yes	
bis (2-Chloro is opropyl) ether	5.0	ug/l	1	-	U	Yes	
2-Chloronaphthalene	5.0	ug/l	1	-	U	Yes	
4-Chlorophenyl phenyl ether	5.0	ug/l	1	-	U	Yes	

Chrysene	5.0	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	5.0	ug/l	1	_	U	Yes
Dibenzofuran	5.0	ug/l	1	-	Ų	Yes
3,3'-Dichlorobenzidine	5.0	ug/l	1	-	UJ 🗸	Yes
Diethyl phthalate	5.0	ug/l	1	-	U	Yes
Dimethyl phthalate	5.0	ug/l	1	-	U	Yes
Di-n-butyl phthalate	5.0	ug/l	1	-	U	Yes
Di-n-octyl phthalate	5.0	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	5.0	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	5.0	ug/l	1		U	Yes
bis(2-Ethylhexyl)phthalate	5.0	ug/l	1	-	U	Yes
Fluoranthene	3.3	ug/l	1	J	J	Yes
Fluorene	5.0	ug/l	1	-	U	Yes
Hexachlorobenzene	5.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	5.0	ug/l	1		U	Yes
Hexachlorocyclopentadiene	5.0	ug/l	1	-	υ	Yes
Hexachloroethane	5.0	ug/l	1	121	U	Yes
Indeno(1,2,3-cd)pyrene	5.0	ug/l	1	-	U	Yes
Isophorone	5.0	ug/l	1	-	U	Yes
2-Methylnaphthalene	0.88	ug/l	1	J	J	Yes
2-Nitroaniline	5.0	ug/l	1	-	U	Yes
3-Nitroaniline	5.0	ug/l	1	251	UJ ✓	Yes
4-Nitroaniline	5.0	ug/l	1		U	Yes
Nitrobenzene	5.0	ug/l	1	•	U	Yes
N-Nitroso-di-n-propylamine	5.0	ug/l	1	7.7	U	Yes
N-Nitrosodiphenylamine	5.0	ug/l	1	-	U	Yes
Phenanthrene	5.0	ug/l	1		U	Yes
Pyrene	2.6	ug/l	1	1	J	Yes
1,2,4,5-Tetrachlorobenzene	5.0	ug/l	1		U	Yes
METHOD:	8270D (SIN	1)				
Benzo(a)anthracene	0.40	ug/l	1	_	_	Yes
Benzo(a)pyrene	0.20	ug/l	1		U	Yes
Benzo(b)fluoranthene	0.20	ug/l	1	_	Ū	Yes
Benzo(k)fluoranthene	0.20	ug/l	1	-	Ū	Yes
Chrysene	0.20	ug/l	1	-	Ū	Yes
Dibenzo(a,h)anthracene	0.20	ug/l	1	_	Ü	Yes
1,4-Dioxane	0.86	ug/l	1		-	Yes
Indeno(1,2,3-cd)pyrene	0.20	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	•	Yes
2-Methylnaphthalene	0.84	ug/l	1	J	J	Yes
Naphthalene	1.1	ug/l	1	1	-	Yes
respectations to	4.4	46/ I	-	177	_	1.63

.

Sample ID: FA42237-4MS

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwater

.

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Caprolactam	37.7	ug/l	1	-	-	Yes
4-Chloro-3-methyl phenol	90.1	ug/l	1	-	-	Yes
2-Chlorophenol	87.2	ug/l	1	-	-	Yes
2,4-Dichlorophenol	92.6	ug/l	1	-	-	Yes
2,4-Dimethylphenol	84.3	ug/l	1	-	-	Yes
2,4-Dinitrophenol	178	ug/l	1	-	-	Yes
4,6-Dinitro-o-cresol	237	ug/l	1	-	-	Yes
2-Methylphenol	75.4	ug/l	1	-	-	Yes
3&4-Methylphenol	149	ug/l	1	-	-	Yes
2-Nitrophenol	93.9	ug/l	1	-	-	Yes
4-Nitrophenol	128	ug/l	1	•	-	Yes
Pentachlorophenol	218	ug/l	1	-	-	Yes
Phenol	52.6	ug/l	1	-	-	Yes
2,3,4,6-Tetrachlorophenol	95.0	ug/l	1	-	-	Yes
2,4,5-Trichlorophenol	102	ug/l	1	-	-	Yes
2,4,6-Trichlorophenol	101	ug/l	1	-	-	Yes
Acenaphthene	99.8	ug/l	1	-	-	Yes
Acenaphthylene	99.9	ug/l	1	-	-	Yes
Acetophenone	84.7	ug/l	1	-	-	Yes
Anthracene	98.6	ug/l	1	-	-	Yes
Atrazine	90.7	ug/l	1	-	-	Yes
Benzaldehyde	72.5	ug/l	1	-	-	Yes
Benzo(a)anthracene	98.7	ug/l	1	-	-	Yes
Benzo(a)pyrene	91.9	ug/l	1	-	-	Yes
Benzo(b)fluoranthene	92.8	ug/l	1	-	-	Yes
Benzo(g,h,i)perylene	107	ug/l	1	-	-	Yes
Benzo(k)fluoranthene	92.7	ug/l	1	-	-	Yes
1,1'-Biphenyl	92.2	ug/l	1	-	-	Yes
4-Bromophenyl phenyl ether	105	ug/l	1	-	-	Yes
Butyl benzyl phthalate	103	ug/l	1	-	-	Yes
Carbazole	98.7	ug/l	1	-	-	Yes
4-Chloroaniline	158	ug/l	1	-	-	Yes
bis(2-Chloroethoxy)methane	89.1	ug/l	1	-	-	Yes
bis(2-Chloroethyl)ether	91.4	ug/l	1	-	-	Yes
bis(2-Chloroisopropyl)ether	97.8	ug/l	1	-	-	Yes
2-Chloronaphthalene	98.2	ug/l	1	-	-	Yes
4-Chlorophenyl phenyl ether	96.2	ug/l	1	-	-	Yes

	Chrysene	104	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene		89.8	ug/l	1	-	-	Yes
	Dibenzofuran	97.0	ug/l	1	_	12	Yes
	3,3'-Dichlorobenzidine	154	ug/l	1		-	Yes
	Diethyl phthalate	94.2	ug/l	1	_	-	Yes
	Dimethyl phthalate	95.9	ug/l	1	-	_	Yes
	Di-n-butyl phthalate	98.0	ug/l	1	-	- 1	Yes
	Di-n-octyl phthalate	105	ug/l	1	-	-	Yes
	2,4-Dinitrotoluene	93.9	ug/l	1	-	-	Yes
	2,6-Dinitrotoluene	95.0	ug/l	1	-	-	Yes
	bis(2-Ethylhexyl)phthalate	106	ug/l	1	-	-	Yes
	Fluoranthene	93.4	ug/l	1	-	-	Yes
	Fluorene	96.1	ug/l	1	-	-	Yes
	Hexachlorobenzene	102	ug/l	1	-	-	Yes
	Hexachlorobutadiene	92.2	ug/l	1	-	-	Yes
	Hexachlorocyclopentadiene	104	ug/l	1	-	-	Yes
	Hexachloroethane	87.5	ug/l	1	720	2	Yes
	Indeno(1,2,3-cd)pyrene	106	ug/l	1	-	•	Yes
	Isophorone	98.1	ug/l	1	-	-	Yes
	2-Methylnaphthalene	87.2	ug/l	1	-	2	Yes
	2-Nitroaniline	108	ug/l	1	-	-	Yes
	3-Nitroaniline	136	ug/l	1	17.5	250	Yes
	4-Nitroaniline	90.8	ug/l	1	-	-	Yes
	Nitrobenzene	98.4	ug/l	1		-	Yes
	N-Nitroso-di-n-propylamine	85.6	ug/l	1	-	950	Yes
	N-Nitrosodiphenylamine	103	ug/l	1	-	-	Yes
	Phenanthrene	101	ug/i	1	•		Yes
	Pyrene	107	ug/l	1	.5	7.5	Yes
	1,2,4,5-Tetrachlorobenzene	85.4	ug/l	1	-	-	Yes
	METHOD: 82	70D (SINA)	1				
	1,4-Dioxane	412	ug/l	1	_	52.5	Yes
	1,4-Dioxane	412	ug/1	1	-		163
	METHOD: 82	70D (SIM)	}				
	Benzo(a)anthracene	7.0	ug/l	1	-	-	Yes
	Benzo(a)pyrene	7.2	ug/l	1	-	-	Yes
	Benzo(b)fluoranthene	7.4	ug/l	1	_	-	Yes
	Benzo(k)fluoranthene	7.6	ug/l	1		-	Yes
	Chrysene	7.3	ug/l	1	-	-	Yes
	Dibenzo(a,h)anthracene	6.6	ug/l	1	-	2	Yes
	Indeno(1,2,3-cd)pyrene	7.1	ug/l	1	-	-	Yes
	1-Methylnaphthalene	12.0	ug/l	1	17.		Yes
	2-Methylnaphthalene	11.4	ug/l	1			Yes
	Naphthalene	11.7	ug/l	1	-	-	Yes

Sample ID: FA42237-4MSD

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

200

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Caprolactam	25.0	ug/l	1	-	-	Yes
4-Chloro-3-methyl phenol	80.6	ug/l	1	-	-	Yes
2-Chlorophenol	76.1	ug/l	1	-	-	Yes
2,4-Dichlorophenol	80.8	ug/l	1	-	-	Yes
2,4-Dimethylphenol	77.6	ug/l	1	-	-	Yes
2,4-Dinitrophenol	161	ug/l	1	-		Yes
4,6-Dinitro-o-cresol	212	ug/l	1	-	-	Yes
2-Methylphenol	69.9	ug/l	1	-	-	Yes
3&4-Methylphenol	132	ug/l	1	-	-	Yes
2-Nitrophenol	80.3	ug/l	1	-	-	Yes
4-Nitrophenol	106	ug/l	1	-	-	Yes
Pentachlorophenol	195	ug/l	1	-	-	Yes
Phenol	43.3	ug/l	1	-	-	Yes
2,3,4,6-Tetrachlorophenol	85.4	ug/l	1	-	0.40	Yes
2,4,5-Trichlorophenol	92.3	ug/l	1	-	5.5%	Yes
2,4,6-Trichlorophenol	89.6	ug/l	1	-	-	Yes
Acenaphthene	88.1	ug/l	1	-	-	Yes
Acenaphthylene	88.3	ug/l	1	-	-	Yes
Acetophenone	76.0	ug/l	1	_	-	Yes
Anthracene	89.4	ug/l	1	-	-	Yes
Atrazine	82.8	ug/l	1	100	-	Yes
Benzaldehyde	67.2	ug/l	1	-	-	Yes
Benzo(a)anthracene	88.1	ug/l	1	-	-	Yes
Benzo(a)pyrene	83.2	ug/l	1	-	-	Yes
Benzo(b)fluoranthene	81.5	ug/l	1	-	-	Yes
Benzo(g,h,i)perylene	98.2	ug/l	1	-	**	Yes
Benzo(k)fluoranthene	83.4	ug/l	1	-	-	Yes
1,1'-Biphenyl	81.8	ug/l	1	•	125	Yes
4-Bromophenyl phenyl ether	90.7	ug/l	1	-	-	Yes
Butyl benzyl phthalate	92.8	ug/l	1	-	-	Yes
Carbazole	89.4	ug/l	1	-	-	Yes
4-Chloroaniline	131	ug/l	1		-	Yes
bis(2-Chloroethoxy)methane	78.5	ug/l	1	-	-	Yes
bis(2-Chloroethyl)ether	80.1	ug/l	1	-	-	Yes
bis (2-Chlorois opropyl) ether	85.6	ug/l	1	-	-	Yes
2-Chloronaphthalene	85.2	ug/l	1	-	-	Yes
4-Chlorophenyl phenyl ether	86.7	ug/l	1	-	-	Yes

Chrysene	92.8	ug/l	1	-	(-)	Yes
Dibenzo(a,h)anthracene	80.5	ug/l	1	-	97.5	Yes
Dibenzofuran	86.8	ug/l	1	-	-	Yes
3,3'-Dichlorobenzidine	126	ug/l	1	-	-	Yes
Diethyl phthalate	86.3	ug/l	1	-	-	Yes
Dimethyl phthalate	87.8	ug/l	1	-	7.2	Yes
Di-n-butyl phthalate	88.7	ug/l	1	-	-	Yes
Di-n-octyl phthalate	95.8	ug/l	1	-	-	Yes
2,4-Dinitrotoluene	88.8	ug/l	1	540	-	Yes
2,6-Dinitrotoluene	85.4	ug/l	1	370	-	Yes
bis (2-Ethylhexyl) phthalate	95.3	ug/l	1	-	-	Yes
Fluoranthene	84.6	ug/l	1	7-/	-	Yes
Fluorene	86.4	ug/l	1	0.70	-	Yes
Hexachlorobenzene	91.5	ug/l	1	-	-	Yes
Hexachlorobutadiene	77.9	ug/l	1	-	12-2	Yes
Hexachlorocyclopentadiene	88.7	ug/l	1	-	1.5	Yes
Hexachloroethane	76.5	ug/l	1	0.20	121	Yes
Indeno(1,2,3-cd)pyrene	93.9	ug/l	1			Yes
Isophorone	88.3	ug/l	1	15		Yes
2-Methylnaphthalene	75.3	ug/l	1	-	121	Yes
2-Nitroaniline	97.5	ug/l	1			Yes
3-Nitroaniline	128	ug/l	1	2.5	250	Yes
4-Nitroaniline	80.3	ug/l	1	-	-	Yes
Nitrobenzene	86.1	ug/l	1	35-6		Yes
N-Nitroso-di-n-propylamine	78.4	ug/l	1	-	17.	Yes
N-Nitrosodiphenylamine	89.5	ug/l	1	-	72.5	Yes
Phenanthrene	89.4	ug/l	1	(*)	(-)	Yes
Pyrene	97.7	ug/l	1	-	-	Yes
1,2,4,5-Tetrachlorobenzene	73.4	ug/l	1	-	-	Yes
METHOD:	8270D (SIN	√ 1)				
1,4-Dioxane	459	ug/l	1	-	-	Yes
METHOD:	8270D (SIN	A)				
Benzo(a)anthracene	8.3	ug/l	1	_	_	Yes
Benzo(a)pyrene	8.3	ug/l	1			Yes
Benzo(b)fluoranthene	8.7	ug/l	1	_	22	Yes
Benzo(k)fluoranthene	8.4	ug/l	1			Yes
Chrysene	8.5	ug/l	1			Yes
Dibenzo(a,h)anthracene	7.8	ug/l	1	_	_	Yes
Indeno(1,2,3-cd)pyrene	8.4	ug/i ug/i	1			Yes
1-Methylnaphthalene	13.2	ug/l	1	_		Yes
2-Methylnaphthalene	13.0	ug/l	1	_		Yes
Naphthalene	13.0	-	1	7-2		Yes
ιναμιτιιαιείτε	15.0	ug/l	Τ.		0.70	162

	Project Number:_FA42237 Date:March_20,_2017 Shipping Date:March_20,_2017 EPA Region:2
REVIEW OF SEMIVOLATILE C	RGANIC PACKAGE
The following guidelines for evaluating volatile org validation actions. This document will assist the remake more informed decision and in better serving results were assessed according to USEPA data following order of precedence: EPA Hazardous W 2015 – Revision 0. Semivolatile Data Validation. The QC on the data review worksheets are from the prima noted.	viewer in using professional judgment to the needs of the data users. The sample a validation guidance documents in the aste Support Section, SOP HW-35A, July C criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest	
Lab. Project/SDG No.:FA42237	
X Holding Times X GC/MS Tuning	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
_Overall Comments:_Selected_SVOCs_from_the_TCL_s _8270D;_Selected_PAHs_and_1,4-Dioxane_analyzed_by _and_PAH's_analyzed_separately	· · · · · · · · · · · · · · · · · · ·
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: A au Mau Mau Mau Mau Mau Mau Mau Mau Mau	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
		· · · · · · · · · · · · · · · · · · ·
3		

All criteria were met	X
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED		ACTION
All samples ext appropriate.	racted and an	alyzed within method reco	mme	nded holding. Sample preservation

Cooler temperature (Criteria: 4 + 2 °C): 3.2 - 3	.6°C
--	------

<u>Actions</u>

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

				tion
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds
	No	≤ 7 days (for extraction) ≤ 40 days (for analysis)	Use professi	onal judgment
:	No	> 7 days (for extraction) > 40 days (for analysis)	,l	Use professional judgment
Aqueous	Yes	≤7 days (for extraction) ≤40 days (for analysis)	No qualification	
	Yes	> 7 days (for extraction) > 40 days (for analysis)	Į.	ŲJ
	Yes/No	Grossly Exceeded	ı	UJ or R
10.50	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use professi	onal judgment
Non-Aqueous	No	> 14 days (for extraction) > 40 days (for analysis)	Use J professio judgme	
	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qualification	
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	ŲJ
	Yes/No	Grossly Exceeded	J	U.I or R

All criteria were met _	X
Criteria were not met see below,	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

_X__ The DFTPP performance results were reviewed and found to be within the specified criteria.

_X__ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

List	the	samples	affected:

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were metX_	_
Criteria were not met	
and/or see below	

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Instrument ID numbers:GCMSL GCMS4					7_(SCAN) D /low
Date of initial calibration:02/23/17_(SIM) Instrument ID numbers:GCMSU Matrix/Level:Aqueous/low		GCMSV	7_(SIM) V /low		
DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
	}				

Note: Instrument GCMSL used for the analysis of QC samples; QC samples not validated.

Initial calibration meets the method and guidance validation document performance criteria.

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

Color de	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	Ü	
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment JF or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment	
%RSD < Maximum %RSD in Table 2 for target analyte	No qualification	No qualification	

Initial Calibration

Table~2.~RRF,~% RSD, and~% D~Acceptance~Criteria~in~Initial~Calibration~and~CCV~for~Semivolatib~Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
1,4-Dioxane	0.010	40.0	-40.0	- 50.0
Benzaldehyde	0.100	40.0	- 40.0	= 50.0
Phenol	0.080	20.0	± 20.0	=,25.0
Bis(2-chloroethyl)ether	0.100	20.0	- 20.0	- 25.0
2-Chlorophenol	0.200	20.0	= 20.0	= 25.0
2-Methylphenol	0.010	20.0	± 20.0	= 25.0
3-Methylphenol	0.010	20.0	± 20.0	- 25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	± 25.0	= 50.0
Acetophenone	0,060	20.0	= 20.0	- 25.0
4-Methylphenol	0.010	20.0	± 20.0	= 25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	±25.0
Hexachloroethane	0.100	20.0	= 20.0	- 25.0
Nitrobenzene	0.090	20.0	-20.0	-25.0
Isophorone	0.100	20.0	= 20.0	±25.0
2-Nitrophenol	0.060	20.0	+ 20.0	-25.0
2,4-Dimethylphenol	0.050	20.0	+25.0	- 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	+20.0	- 25.0
2,4-Dichlorophenol	0.060	20.0	+ 20.0	- 25.0
Naphthalene	0.200	20.0	- 20.0	- 25.0
4-Chloroaniline	0.010	40.0	= 40.0	± 50.0
Hexachlorobutadiene	0.040	20.0	= 20.0	= 25.0
Caprolactam	0.010	40.0	= 30.0	= 50.0
4-Chloro-3-methylphenol	0.040	20.0	= 20.0	= 25.0
2-Methylnaphthalene	0.100	20.0	± 20.0	± 25.0
Hexachlorocyclopentadiene	0.010	40.0	+40.0	50.0
2,4,6-Trichlorophenol	0.090	20.0	= 20.0	=,25.0
2,4,5-Trichlorophenol	0.100	20.0	= 20.0	= 25.0
1,1'-Biphenyl	0.200	20.0	+ 20.0	= 25.0

.

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	-20.0	± 25.0
2-Nitroaniline	0.060	20.0	= 25.0	25.0
Dimethylphthalate	0.300	20,0	± 25.0	= 25.0
2,6-Dinitrotoluene	0.080	20.0	=20.0	± 25.0
Acenaphthylene	0,400	20.0	= 20.0	±25.0
3-Nitroaniline	0.010	20.0	±25.0	±50.0
Acenaphthene	0.200	20.0	= 20.0	= 25.0
2,4-Dinitrophenol	0.010	40.0	-50.0	- 50.0
4-Nitrophenol	0.010	40.0	= 40.0	= 50.0
Dibenzofuran	0.300	20.0	= 20.0	± 25.0
2,4-Dinitrotoluene	0.070	20.0	=20.0	= 25.0
Diethylphthalate	0.300	20.0	= 20.0	=25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	±20.0	± 25.0
4-Chlorophenyl-phenylether	0.100	20.0	= 20.0	- 25.0
Fluorene	0.200	20.0	= 20.0	±25.0
4-Nitroaniline	0.010	40.0	-40.0	- 50.0
4,6-Dinitro-2-methylphenol	0.010	40,0	=30.0	±50.0
4-Bromophenyl-phenyl ether	0.070	20.0	± 20.0	= 25.0
N-Nitrosodiphenylamine	0.100	20.0	-20.0	±25.0
Hexachlorobenzene	0.050	20.0	- 20.0	±25.0
Atrazine	0.010	40,0	- 25.0	±50.0
Pentachlorophenol	0.010	40.0	±40.0	± 50.0
Phenanthrene	0.200	20.0	= 20.0	= 25.0
Anthracene	0.200	20.0	- 20.0	-25.0
Carbazole	0.050	20.0	± 20.0	= 25.0
Di-n-butylphthalate	0.500	20.0	= 20.0	= 25.0
Fluoranthene	0.100	20.0	- 20.0	± 25.0
Pyrene	0.400	20.0	= 25.0	- 50.0
Butylbenzylphthalate	0.100	20.0	± 25.0	± 50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
3,3'-Dichlorobenzidine	0.010	40.0	±40.0	± 50.0
Benzo(a)anthracene	0.300	20.0	= 20.0	- 25.0
Chrysene	0.200	20.0	- 20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	±25.0	= 50.0
Di-n-octylphthalate	0.010	40.0	±40.0	= 50.0
Benzo(b)fluoranthene	0.010	20.0	= 25.0	÷ 50.0
Benzo(k)fluoranthene	0.010	20.0	€25.0	± 50.0
Benzo(a)pyrene	0.010	20.0	= 20.0	± 50.0
Indeno(1,2,3-ed)pyrene	0.010	20.0	= 25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	÷ 25.0	÷ 50.0
Benzo(g,h,i)perylene	0.010	20.0	= 30.0	± 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	±20.0	= 50.0
Naphthalene	0.600	20.0	=25.0	- 25.0
2-Methylnaphthalene	0.300	20.0	±20.0	±25.0
Acenaphthylene	0.900	20.0	= 20.0	± 25.0
Acenaphthene	0.500	20.0	+ 20.0	± 25.0
Fluorene	0.700	20.0	±25.0	± 50.0
Phenanthrene	0.300	20.0	±25.0	± 50.0
Anthracene	0.400	20.0	± 25.0	± 50.0
Fluoranthene	0.400	20.0	±25.0	± 50.0
Pyrene	0.500	20.0	-30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	±,25.0	± 50.0
Chyrsene	0.400	20.0	±25.0	= 50.0
Benzo(b)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	- 25.0	= 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	=40.0	= 50.0
Dibenzo(a,h)anthracene	0.010	25.0	= 40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	±40.0	± 50.0

Pentachlorophenol	0.010	40.0	= 50.0	= 50.0
Deuterated Monitoring Compoun	nds			

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D
1,4-Dioxane-d ₈	0.010	20.0	-25.0	= 50.0
Phenol-ds	0.010	20.0	-25.0	=25.0
Bis-(2-chloroethyl)ether-d ₈	0.100	20.0	= 20.0	= 25.0
2-Chtorophenol-d	0.200	20,0	= 20.0	#25.0
4-Methylphenol-d _x	0.010	20.0	- 20.0	- 25.0
4-Chloroaniline-d	0.010	40.0	-40.0	±50.0
Nitrobenzene-ds	0.050	20.0	= 20.0	=,25.0
2-Nitrophenol-d ₄	0.050	20.0	±20.0	±25.0
2,4-Dichlorophenol-da	0.060	20.0	-20.0	= 25.0
Dimethylphthalate-d ₆	0.300	20.0	- 20.0	= 25.0
Acenaphthylene-d ₈	0.400	20.0	- 20.0	= 25.0
4-Nitrophenol-di	0.010	40.0	₹40.0	= 50.0
Fluorene-d ₁₀	0.100	20.0	- 20.0	-25.0
4,6-Dinitro-2-methylphenol-d	0.010	40.0	-30.0	= 50.0
Anthracene-d ₁₀	0.300	20.0	= 20.0	= 25.0
Pyrene-d ₁₀	0,300	20.0	- 25.0	= 50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	= 20.0	± 50.0
Fluoranthene-d ₁₆ (SIM)	0.400	20.0	-25.0	- 50.0
2-Methylnaphthalene-d ₁₀ (SIM)	0.300	20.0	= 20.0	-25.0

If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were metX
Criteria were not met
and/or see below

CONTINUING CALIBRATION VERIFICATION/

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:02/13/17_(SIM)	02/23/17_(SIM)
Date of initial calibration verification (ICV):_02/13/17	02/23/17
Date of continuing calibration verification (CCV):_03/31/17	03/29/17
Date of closing CCV:02/14/17;_04/01/17	7
Instrument ID numbers:GCMSW	GCMSU
Matrix/Level:Aqueous/low	Aqueous/low
Date of initial calibration:03/26/17_(SCAN)	03/22/17
Date of initial calibration verification (ICV):03/2617	03/22/17
Date of continuing verification (CCV):03/27/17	03/30/17
Date of closing CCV:	·
Instrument ID numbers:GCMSL	GCMS4D
Matrix/Level:Aqueous/low	Aqueous/low

DATE	LAB FILE ID#	CRITERIA OUT	COMPOUND	SAMPLES
		RFs, %RSD, <u>%D</u> , r		AFFECTED
GCMS4D				
03/23/17	icv28-50, 8270x	22.9	4,6-dinitro-o-cresol^	FA42237-1 to -6
		-75.0/-76.3	4-chloroaniline	
	į	-59.3	3-nitroaniline	
		-62.8/-98.0	3,3'-dichlorobenzidine	
03/30/17	cc28-50	-25.8	3,3'-dichlorobenzidine^	FA42237-1 to -6

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria except for the cases described in this document.

Instrument GCMSL used for the analysis of QC samples; QC samples not validated.

^Analytes with % difference outside the method performance criteria but within guidance document performance criteria in the continuing calibration verification guidance document.

Analytes not meeting the initial and continuing % difference in the initial and continuing calibration verification criteria qualified as estimated (J or UJ) in affected samples.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Criteria for Opening CCV	Cuitagia for Clasing CCV	Action		
Criteria for Opening CCV	Criteria for Closing CCV -	Detect	Non-detect	
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R	
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment	
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF > Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	,J	ÜJ	
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification	

All criteria were met _	X
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

Note:

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana	alytes_detected_	_in_method_bla	nks	
Note:				
Field/Equipme	<u>nt</u> /Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
		:uuuuuuuu.		ed_with_this_data_package

All criteria were met _	_X
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥ CRQL	Use professional judgment
		< CRQL	Report at CRQL and qualify as non-detect (U)
Method,	TCLP/SPLP	≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
LEB, Field		≥ CRQL and ≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were met	
Criteria were not met	
and/or see below	X

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 7.

The recovery limits for any of the compounds listed in Table 7 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Cityt.	Action		
Criteria	Detect	Non-detect	
%R < 10% (excluding DMCs with 10% as a lower acceptance limit)	₂ J-	R	
10% ≤ %R (excluding DMCs with 10% as a lower acceptance limit) < Lower Acceptance Limit	- 1,	UJ	
Lower Acceptance limit ≤ %R ≤ Upper Acceptance Limit	No qualification	No qualification	
%R > Upper Acceptance Limit	Jт	No qualification	

Table 7. DMC Actions for Semivolatile Analysis

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

Matrix:Groundwater		
SAMPLE ID	SURROGATE COMPOUND	ACTION
_this_documentNonde	d_criteria_in_all_samples_analyzed_except_f uterated_surrogates_added_to_the_samples_ n_the_cases_described_in_this_document	_and_were_within_laboratory_

Note: Surrogate standards not recovered in samples FA42237-4 and FA42237-5 (SIM- 1,4-dixane) due to dilution. No action taken, professional judgment. Surrogates recovered in the undiluted sample.

Surrogate recoveries in samples analyzed by SW846-8270D (SIM) were corrected for the concentration of the surrogate spiked. The correction is due to the following: the laboratory split batches between 8270 and 8270SIM. The surrogates were spiked at 8270 levels, which is 5x higher than what the laboratory 8270SIM setup expects. SIM surrogates recoveries were divided by 5. Calculations were spot checked.

Table 8. Semivolatile DMCs and the Associated Target Analytes

1,4-Dioxane+d ₈ (DMC-1)	Phenol-ds (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)
1,4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether
	Phenol	2,2'-Oxybis(1-chloropropane)
		Bis(2-chloroethoxy)methane
2-Chlorophenol-d4(DMC-4)	4-Methylphenol-d ₈ (DMC-5)	4-Chloroaniline-d4 (DMC-6)
2-Chlorophenol	2-Methylphenol	4-Chloroaniline
	3-Methylphenol	Hexachlorocyclopentadiene
	4-Methylphenol	Dichlorobenzidine
	2,4-Dimethy Iphenol	
Nitrobenzene-d ₅ (DMC-7)	2-Nitrophenol-d ₄ (DMC-8)	2,4-Dichlorophenol-d ₃ (DMC-9)
Acetophenone	Isophorone	2,4-Dichlorophenol
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene
Hexachloroethane		Hexachlorocyclopentadiene
Nitrobenzene		4-Chloro-3-methylphenol
2,6-Dinitrotoluene		2,4,6-Trichlorophenol
2,4-Dinitrotoluene		2,4,5-Trichlorophenol
N-Nitrosodiphenylamine		1,2,4,5-Tetrachforobenzene
		*Pentachlorophenol
		2,3,4,6-Tetrachlorophenol
Dimethylphthalate-d ₆ (DMC-10)	Acenaphthylene-da (DMC-11)	4-Nitrophenol-d4 (DMC-12)
Caprolactam	*Naphthalene	2-Nitroaniline
1,1'-Biphenyl	*2-Methy Inaphthalene	3-Nitroaniline
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol
Diethylphthalate	*Acenaphthylene	4-Nitrophenol
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline
Butylbenzylphthalate		
Bis(2-ethylhexyl) phthalate		
Di-n-octylphthalate		

Fluorene-d ₁₀ (DMC-13)	4.6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d _{in} (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine *Phenanthrene *Anthracene
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene	3,3'-Dichlorobenzidine	
*Pyrene	*Benzo(b)fluoranthene	
*Benzo(a)anthracene	*Benzo(k)fluoranthene	
*Chrysene	*Benzo(a)pyrene	
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-cd)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were met _	
Criteria were not met	
and/or see below	_X

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS

and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID: Sample ID:				_Groundwater_ _Groundwater_					
The QC reported here applies to the following samples: Method: SW846 8270D FA42237-1, FA42237-2, FA42237-3, FA42235-4, FA42237-5, FA42237-6									
Compound	FA42237-4 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
Caprolactam 4-Nitrophenol 4-Chloroaniline 3,3'-	ND ND ND	98 196 98	37.7 128 158	38 65* 161*	98 196 98	25.0 106 131	26 54 134*	41* 19 19	11-68/39 18-62/33 49-105/27
Dichlorobenzidin Hexachlorocyclo		98	154	157*	98	126	129*	20	46-117/29
pentadiene Isophorone 3-Nitroaniline	ND ND ND	98 98 98	104 98.1 136	106* 100* 139*	98 98 98	88.7 88.3 128	90 90* 131*	16 11 6	39-102/29 43-87/25 56-106/27

^{* -} outside laboratory control limits

Note: MS/MSD % recovery and RPD within laboratory control limits except for the cases described in this document.

Results for samples having either MS or the MSD outside the laboratory control limits are not qualified, professional judgment.

No qualification made based on RPD results, professional judgment.

Samples with MS/MSD % recovery high are not qualified, professional judgment. No positive results associated with sample batch.

Method: SW846 8270D SIM

The QC reported here applies to the following samples:

FA42237-1 FA42237-2, FA42237-3, FA42237-4, FA42237-5, FA42237-6

	FA422	37-4	Spike	MS	MS	Spike	MŞD	MSD		Limits
Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
1.4-Dioxane	188		38.4	412	1165*	a 38.4	459	1409*	a 11	15-69/31

⁽a) Outside control limits due to high level in sample relative to spike amount.

Note: MS/MSD % recovery and RPD within laboratory control limits except for the cases described in this document. Results for 1.4-dioxane not qualified, MS/MSD % recovery outside control limits due to high level in sample relative to spike amount.

Note:

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{* -} outside laboratory control limits

All criteria were met_	Χ
Criteria were not met	
and/or see below	

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE	ACTION
				RANGE	

Internal area meets the required criteria for batch samples corresponding to this data package.

Action:

- 1. If an internal standard area count for a sample or blank is greater than 213.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 213% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Ac	tion	
Criteria	Detect	Non-detect	
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	J+	R	
20% < Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+	Ú)	
50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification	
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification	

		All criteria were metX Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
	re Retention Times (RRTs) of reported compoung Continuing Calibration Verification (CCV)	
List compoun	nds not meeting the criteria described above:	
Sample ID	Compounds	Actions
•	m the associated calibration standard (openinust match according to the following criteria: All ions present in the standard mass spect must be present in the sample spectrum. The relative intensities of these ions must as sample spectra (e.g., for an ion with an about the corresponding sample ion abundance more lons present at greater than 10% in the sample standard spectrum, must be evaluated by interpretation.	rum at a relative intensity greater than 10% gree within ±20% between the standard and undance of 50% in the standard spectrum, ust be between 30-70%). The mass spectrum, but not present in the
List compoun	nds not meeting the criteria described above:	
Sample ID	Compounds	Actions
_ldentified_co	ompounds_meet_the_required_criteria	

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

Li	isi	▶ 1	ш	ICs
				IL .~

Sample ID	Compound	Sample ID	Compound

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Ac	Action				
Criteria	Detects	Non-detects				
%Solids < 10.0%	Use professional judgment	Use professional judgment				
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment				
%Solids > 30.0%	No qualification	No qualification				

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID:	FA42237	-4	Analyte:_	_1,4-dioxane_	_	RF:_0.599_
[]		(23051)(4.0)/(20	* *))		

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
FA42237-4	25 x	1,4-Dioxane over calibration range
FA42237-5	200 x	1,4-Dioxane over calibration range
		
		
	16-	
(1.54 <u>-8</u> 133-1)		
		_

	All criteria were met Criteria were not met and/or see belowN/A
FIELD DUPLICATE PRECISION	
Sample IDs:	Matrix:

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL ug/L	SAMPLE CONC. (ug/l)	DUPLICATE CONC. (ug/l)	RPD	ACTION
AL CALUE				1000	00.00
	cision. R	PD within the requ			SD % recovery RPD a < 50 % for detected
target arrany too above					

All criteria were met _	Х.,	
Criteria were not met		
and/or see below		

OTHER ISSUES

List samples qualified	based on the degradation of system	performance during simple analysis:	
Sample ID	Comments	Actions	
			,
			٠
Action:			
during sample analys		mined that system performance has degree by Program COR any action as a resected the data.	
B. Overall Assess	ment of Data		
List samples qualified	based on other issues:		
Sample ID	Comments	Actions	
		e_dataResults_are_valid_and_can_be rn_below	

Action:

1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.

taken, analytes not detected in sample batch above the reporting limit.

Several analytes (62 %) recovered high in the blank spike analyzed on 03/29/17. No action

2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of

- the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).
- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results

EXECUTIVE NARRATIVE

SDG No:

FA42237

Laboratory:

Accutest, Orlando

Analysis:

MADEP VPH

Number of Samples:

8

Location:

BMSMC, Humacao, PR

SUMMARY:

Eight (8) samples were analyzed for Volatiles TPHC Ranges by method MADEP VPH. Samples were validated following the METHOD FOR THE DETERMINATION OF VOLATILE PETROLEUM HYDROCARBONS (VPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the

primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. MS/MSD % recovery and RPD within laboratory control limits except for the

cases described in the Data Review Worksheet. Results for FA42237-4 are

qualified as estimated (UJ).

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 7, 2017

ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA42237-1

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: AQ -Equipment Blank

METHOD: MADEP VPH

Reportable	Yes	Yes	Yes
Lab Flag Validation	⊃		⊃
Lab Flag	•	1	1
Units Dilution Factor L	1.0	1.0	1.0
Units D	ng/L	ug/L	ng/L
Result	100	100	100
Analyte Name	C5 - C8 Aliphatics (Unadj.)	C9 - C12 Aliphatics (Unadj.)	C9 - C10 Aromatics (Unadj.)

Sample ID: FA42237-2

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: AQ - Field Blank Water

METHOD: MADEP VPH

1/8/1
2 /0
ng/L
100 ug/L 1.0 -

Sample ID: FA42237-3

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units D	Units Dilution Factor Lab Flag	Lab Flag	Validation F	Reportable	
C5 - C8 Aliphatics (Unadj.)	100	ng/L	1.0	ı	n	Yes	
C9 - C12 Aliphatics (Unadj.)	100	ng/L	1.0	,	⊃	Yes	
C9 - C10 Aromatics (Unadj.)	100	ug/L	1.0	ı	ח	Yes	

Sample ID: FA42237-4

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

METHOD: MADEP VPH

Reportable	Yes	Yes	Yes
Validation	(n	S	3
Lab Flag	1	1	•
Units Dilution Factor Lab Flag	1.0	1.0	1.0
Units D		ng/L	
Result	100	100	100
Analyte Name	C5 - C8 Aliphatics (Unadj.)	C9 - C12 Aliphatics (Unadj.)	C9 - C10 Aromatics (Unadj.)

Sample ID: FA42237-5

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units Di	Units Dilution Factor	Lab Flag	Validation	Reportable	
5 - C8 Aliphatics (Unadj.)	100	ng/L	1.0	ı	⊃	Yes	
C9 - C12 Aliphatics (Unadj.)	100	ng/L	1.0	ι	⊃	Yes	
9 - C10 Aromatics (Unadj.)	100	ng/L	1.0	.5	⊃	Yes	

Sample ID: FA42237-6

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

METHOD: MADEP VPH

Sample ID: FA42237-4MS

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

METHOD: MADEP VPH

Reportable	Yes	Yes	Yes
Validation	à	1	1
Lab Flag	ι	•	1
ilution Factor	ug/L 1.0 Yes	1.0	1.0
Units Di	ng/L	ng/L	ng/L
Result	262	161	73.8
Analyte Name	C5 - C8 Aliphatics (Unadj.)	C9 - C12 Aliphatics (Unadj.)	C9 - C10 Aromatics (Unadj.)

Sample ID: FA42237-4MSD

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwater

	: : (
P VPH	-
MADE	•
METHOD: MADEP VPH	
	•

Analyte Name	Result	Units Dil	Result Units Dilution Factor Lab Flag Validation Reportable	Lab Flag	Validation	Reportable
C5 - C8 Aliphatics (Unadj.)	262	ng/L	1.0	ι		Yes
C9 - C12 Aliphatics (Unadj.)	153	ng/L	1.0	ı	,	Yes
C9 - C10 Aromatics (Unadj.)	82.6	ng/L	1.0	9	a	Yes

Type of validation	on Full:X	Project Number:_FA42237
	Limited:	Date: 03/20/2017 Shipping date: 03/20/2017
		Shipping date:03/20/2017
		EPA Region:2
REVIEW	OF VOLATILE PETROL	EUM HYDROCARBON (VPHs) PACKAGE
actions. This do informed decision assessed accord METHOD FOR Massachusetts E validation guideli criteria and data	cument will assist the revination and in better serving the ongoing to the data validation guith DETERMINATION OF Department of Environment ones promulgated by the U	e organics were created to delineate required validation ewer in using professional judgment to make more e needs of the data users. The sample results were idance documents in the following order of precedence VOLATILE PETROLEUM HYDROCARBONS (VPH), al Protection, Revision 1.1 (2004). Also the general SEPA Hazardous Wastes Support Section. The QC on the data review worksheets are from the primary
The hardcopied (received has bee review for VOCs	n reviewed and the quality	Laboratories - Orlando data package control and performance data summarized. The data
No. of Samples: _ Field blank No.: _ Equipment blank	No.:FA42237	Sample matrix:Groundwater
rieid duplicate No).: -	
X Blanks X Surroga	Times Tuning Standard Performance	X Compound Quantitation X Quantitation Limits
Overall Commen (Unadj.))	ts: _Volatiles_by_GC_by_N	1ethod_MADEP_VPH,_REV_1.1(C9- C10 Aromatics
45 45 455		
	ti e	
Definition of Qual	fiers:	
J- Estimated	f results	
U- Compour	d not detected	
R- Rejected		
UJ- Estimated	I nondetect	
Reviewer:	Paul Jufant	
Date:May	_7,_2017	

		Criteria were not	met and/or see be	elow
I. DATA COMPLETA. Data Pac				
MISSING INFORMATIC	N DATE LAB. CC	<u>ONTACTED</u>	DATE RECEI	<u>VED</u>

				- 21
B. Other			Disc	crepancies:
c— — — —				

	All criteria were met	_X
Criteria were	not met and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	ACTION	
Samples ana				ample preservation	
within the required criteria.					

Criteria

Preservation:

Samples analyzed with ambient purge temperature: Samples must be acidified to a pH of 2.0 or less at the time of collection.

Samples analyzed with heated purge temperature: Samples must be treated to a pH of 11.0 or greater at the time of collection.

Methanol preservation of soil/sediment samples is mandatory. Methanol (purgeand-trap grade) must be added to the sample vial before or immediately after sample collection. In lieu of the in-field preservation of samples with methanol, soil samples may be obtained in specially-designed air tight sampling devices, provided that the samples are extruded and preserved in methanol within 48 hours of collection.

Holding times:

Aqueous samples using ambient or heated purge - analyze within 14 days. Soil/sediment samples - analysis within 28 days.

Cooler temperature (Criteria: 4 <u>+</u> 2 °C):3.2-3.6_°C	
---	--

Actions: Qualify positive results/non-detects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ).

If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R).

If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

		C	All criteria were not met an	eria were metX nd/or see below	
CALIBRAT	IONS VERIFIC	CATION			
			trument calibration are d maintaining acceptab	e established to ensure ple quantitative data.	
		Date of initial cal	ibration:03/21/17_		
	Dates of initial calibration verification:03/21/17				
		Instrument ID	numbers:	HP5890	
		Matrix/Level:	AQUEOUS/	MEDIUM	
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED	
loiti	al and initial ag	libration varification			
IIIIII	ai and iniliai ca	mbration vernication	meet method specific r	equirements	

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be equal to or less than 25% over the working range for the analyte of interest. When this condition is met, linearity through the origin may be assumed, and the average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range
 of interest. Calculate the collective CFs for C5-C8 Aliphatic Hydrocarbons and C9C12 Aliphatic Hydrocarbons using the FID chromatogram. Calculate the collective
 CF for the C9-C10 Aromatic Hydrocarbons using the PID chromatogram. Tabulate
 the summation of the peak areas of all components in that fraction against the total
 concentration injected. The %RSD of the calibration factor must be equal to or less
 than 25% over the working range for the hydrocarbon range of interest.

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples, and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and

percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_03/21/17
Dates of continuing calibration verification:_	_03/26/17;_03/27/17
Dates of final calibration verification:	_03/27/17:_03/27/17
Instrument ID numbers:	VOA10
Matrix/Level:AQU	IEOUS/MEDIUM

DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
	<u> </u>			

Note: Continuing and final calibration verification meets method specific requirements.

A separate worksheet should be filled for each initial curve

	53		Criteria were not	All criteria were metX met and/or see below	_
V A. BLANK	ANALYSIS RE	SULTS (Sect	tions 1 & 2)		
of contaminatio associated with with any blanks determine wheth problem is an i	n problems. I the samples, s exist, all data her or not ther solated occurr er samples sus	The criteria including trip a associated e is an inherence not aff	for evaluation of , equipment, and l with the case me rent variability in t fecting other data	e the existence and magnitude blanks apply only to blar laboratory blanks. If problemust be carefully evaluated he data for the case, or if the case is a Laboratory Method Blantated to determine if same	nks ms I to the ank
List the contam separately.	ination in the	blanks belov	v. High and low I	evels blanks must be treat	ted
Laboratory blani	ks				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
_METHOD_BLA	NKS_MEET_	THE_METHO	D_SPECIFIC_CF	RITERIA	_
Note:					_
Field/Trip/Equip	oment				
A methanol trip	blank or acidi			hould continually accompa ely, during sampling, stora	
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
_ANALYTE_DE	TECTED_IN_1	HE_FIELD/		ACKAGENO_TARGET .NKS_ASSOCIATED_WITH	
					_
Note:					

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

SAMPLE ID

All criteria were met _	_x
Criteria were not met and/or see below	

ACTION

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SURROGATE COMPOUND

BFB				
_SURROGATE_STAN _LIMITS	IDARD_RECOVI	ERIES_WITH	IIN_LABORATORY_	CONTROL
QC Limits* (Aqueous)	70 to 120	to		
QC Limits* (Solid)LL_to_UL	_70_to_130_ _70_to_130_	to	to	

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 70% or more than 130%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) Percent moisture of associated soil/sediment sample is >25% and surrogate recovery is >10%; or
- (3) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met	
Criteria were not met and/or see belowX_	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 70 130% of the true value. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range), but must be noted in the narrative if <30%.</p>

MS/MSD Recoveries and Precision Criteria

Sample ID:_FA42237-4_MS/MSD_____ Matrix/Level:_Groundwater____

List the %Rs, RPD of the compounds which do not meet the QC criteria.

The QC reported here applies to the following samples:

FA42237-1, FA42237-2, FA42237-3, FA42237-4, FA42237-5, FA42237-6

Compound	FA42237 ug/l	7-4 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
C5- C8 Aliphatic (Unadj.)	ND		480	262	55*	480	262	55*	0	70-130/50
C9- C12 Aliphati (Unadj.) C9- C10 Aromati	ND		400	151	38*	400	153	38*	1	70-130/50
(Unadj.)	ND		240	73.8	31*	240	82.6	34*	11	70-130/50

^{*} Outside laboratory control limits.

Note: MS/MSD % recovery and RPD within laboratory control limits except for the cases described in this document. Results in sample FA42237-4 qualified as estimated (UJ).

No action is taken on MS/MSD results alone to qualify the entire case. However, used informed professional judgment, the data reviewer may use the MS/MSD results in conjunction with other QC criteria and determine the need for some qualification of the data. In those instances where it can be determined that the results of the MS/MSD affect only the sample spiked, the qualification should be limited to this sample alone. However, it may be determined through the MS/MSD results that the laboratory is having a systematic problem in the analysis of one or more analytes, which affects the associated samples.

2. MS/MSD – Unspiked Compounds

List the concentrations of the unspiked compounds and determine the % RSDs of these compounds in the unspiked sample, matrix spike, and matrix spike duplicate.

COMPOUND	CONCENTRA SAMPLE	ATION MS	MSD	%RPD	ACTION

Criteria: None specified, use %RSD ≤ 50 as professional judgment.

Actions:

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

All criteria were met	x
Criteria were not met and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

List the %R of compounds which do not meet the criteria

LCS ID	COMPOUND	% R	QC LIMIT	ACTION	
LCS/LCS	D_RECOVERY_WIT	THIN_LABORA	ATORY_CONTRO	L_LIMTS	
2.23		144,23			0

Criteria:

- * Refer to QAPP for specific criteria.
- * The spike recovery must be between 70% and 130%. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range). If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative.

Actions:

Actions on LCS recovery should be based on both the number of compounds that are outside the %R criteria and the magnitude of the excedance of the criteria.

If the %R of the analyte is > UL, qualify all positive results (j) for the affected analyte in the associated samples and accept nondetects.

If the %R of the analyte is < LL, qualify all positive results (j) and reject (R) nondetects for the affected analyte in the associated samples.

If more than half the compounds in the LCS are not within the required recovery criteria, qualify all positive results as (J) and reject nondetects (R) for all target analyte(s) in the associated samples.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix (1 per 20 samples per matrix)? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. Discuss the actions below:

		C	All riteria were not me		ere metX ee below
IX. FIELD/LAE	BORATORY	/ DUPLICATE PR	ECISION		
precision. These a have more varia performance. It is	uplicates sa analyses ma ability than also expec	DUP amples may be take easure both field a n laboratory dup ted that soil duplic	ken and analyzed a and lab precision; t licates which me ate results will hav	Matrix:as an indi- herefore, easures e a greate	the results may only laboratory er variance than
COMPOUND	SQL	SAMPLE	n collecting identication DUPLICATE	RPD	ACTION
		CONC.	CONC.		
			a package. RPD will b) for analytes dete		

Criteria:

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50% for solid samples if results are \geq SQL. If both samples and duplicate are \leq SQL, the RPD criteria is doubled.

limits.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were metX
Criteria were not met and/or see below

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target VPH Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o Coelution of the m- and p- xylene isomers is permissible.
 - o All surrogates must be adequately resolved from individual Target Analytes included in the VPH Component Standard.
 - o For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.

Note: Target analytes were within the retention time window.

2. If target analytes and/or TICs were not correctly identified, request that the laboratory resubmit the corrected data.

		C	All criteria were metX riteria were not met and/or see below
XII.	QUANTITATIO	ON LIMITS AND SAMPLE	RESULTS
The sa	ample quantitati	ion evaluation is to verify la	aboratory quantitation results.
1.	In the space b	elow, please show a minin	num of one sample calculation:
FID			
Comp	uter printout		
PID			
Comp	uter printout		
2.	If requested, v (MDLs).	verify that the results were	above the laboratory method detection limi
3.		rformed, were the SQLs e amples and dilution factor i	elevated accordingly by the laboratory? Lis in the table below.
	AMDLE ID	DILLITION EACTOR	DEACON SOR BUILTION
	196-6	DILUTION FACTOR 5 x; 10 x	REASON FOR DILUTION C9 - C12 aliphatics (unadj.) above calibration concentration range.
			ere above the concentration range, estimate affected samples/compounds:
			176 <u>2</u> 8 1. 1.

EXECUTIVE NARRATIVE

SDG No:

FA42237

Laboratory:

Accutest, Orlando

Analysis:

MADEP EPH

Number of Samples:

0

Location:

BMSMC, Humacao, PR

SUMMARY:

Eight (8) samples were analyzed for Extractables TPHC Ranges by method MADEP EPH. Samples were validated following the METHOD FOR THE DETERMINATION OF EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Maior:

None

Minor:

None

Critical findings:

None None

Major findings: Minor findings:

 Samples extracted and analyzed within method recommended holding time except for the cases described in the Data Review Worksheet. Sample FA42237-1 extracted outside holding time for confirmation of surrogate recovery. No action taken, professional

judgment.

- 2. Ending calibration verification meets method specific requirements except in the cases described in the Data Review Worksheet. C9 C36 EPH hydrocarbon range were outside method performance criteria. No action taken, professional judgment.
- 3. C11 C22 Aromatics (Unadj.) detected in field/equipment blank below the reporting limit. Sample results below the reporting limits are qualified as non-detects (U) at the reporting limit.
- C19 C36 Aliphatics (Unadj.) detected in field blank below the reporting limit. Sample results below the reporting limits are qualified as non-detects (U) at the reporting limit.
- **4.** Surrogates in sample FA42237-1 recovered low due to matrix interference. Confirmed by re-extraction beyond holding time and re-analysis. No action taken, professional judgment.

Surrogate in sample FA42237-4 recovered low due to matrix interference. Confirmed by re-analysis. Not enough sample for re-extraction. No action taken, professional judgment.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 7, 2017

ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA42237-1

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: AQ-Equipment Blank

METHOD: MADEP EPH

Reportable		Yes	Yes
Validation))	_
Lab Flag	_		_
Units Dilution Factor Lab Flag Validation	1.0	1.0	1.0
Units [ng/L	ng/L	ug/L
Result	200	200	67.2
Analyte Name	C11 - C22 Aromatics (Unadj.)	C9 - C18 Aliphatics	C19 - C36 Aliphatics

Sample ID: FA42237-2

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: AQ - Field Blank Water

METHOD: MADEP EPH

Reportable	Yes	Yes	Yes
Validation)	⊃	⊃
Lab Flag	_	1	
ilution Factor	1.0	1.0	30 ug/L 1.0 - U
Units D	ng/L	ng/L	ng/L
Result	200	200	200
Analyte Name	C11 - C22 Aromatics (Unadj.)	C9 - C18 Aliphatics	C19 - C36 Aliphatics

Sample ID: FA42237-3

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

METHOD: MADEP EPH

able			
Reports	Yes	Yes	Yes
Validation	_	⊃	U Yes
Lab Flag	,		1
Units Dilution Factor	1.0	1.0	1.0
Units D	ng/L	ug/L	ng/L
Result	200	200	200
Analyte Name	C11 - C22 Aromatics (Unadj.)	C9 - C18 Aliphatics	C19 - C36 Aliphatics

Sample ID: FA42237-4

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

METHOD: MADEP EPH

Reportable	Yes	Yes	Yes
or Lab Flag Validation R	>	0	⊃
Lab Flag	ı		1
Units Dilution Factor		1.0	1.0
Units D	ng/L	ng/L	ng/L
	200	200	200
Analyte Name	C11 - C22 Aromatics (Unadj.)	C9 - C18 Aliphatics	C19 - C36 Aliphatics

Sample ID: FA42237-5

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units Di	Result Units Dilution Factor Lab Flag Validation Reportable	Lab Flag	Validation	Reportable	
C11 - C22 Aromatics (Unadj.)	200	ng/L	1.0	ı	-	Yes	
C9 - C18 Aliphatics	200	ng/L	1.0		⊃	Yes	
C19 - C36 Aliphatics	200	ng/L	1.0	a	\supset	Yes	

Sample ID: FA42237-6

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

METHOD: MADEP EPH

Reportable	Yes	Yes	Yes
Validation))	n
Lab Flag	_	1	
Units Dilution Factor Lab Flag Validation Reportable	1.0	1.0	1.0
Units	ng/L	1/8n	ng/L
Result L	200	200	200
Analyte Name	C11 - C22 Aromatics (Unadj.)	C9 - C18 Aliphatics	C19 - C36 Aliphatics

Sample ID: FA42237-4MS

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

METHOD: MADEP EPH

Reportable	Yes	Yes	Yes
Validation	•	•	ı
Lab Flag	•		
Units Dilution Factor Lab Flag Validation	1.0	1.0	1.0
Units Di	ng/L	ng/L	ng/L
		089	1180
Analyte Name	C11 - C22 Aromatics (Unadj.)	C9 - C18 Aliphatics	C19 - C36 Aliphatics

Sample ID: FA42237-4MSD

Sample location: BMSMC, Humacao, PR

Sampling date: 3/20/2017

Matrix: Groundwater

METHOD: MADEP EPH

Units Dilution Factor Lab Flag Validation Reportable	1.0 Yes	1.0 - Yes	
		ug/L 1	0 - 1/200
Result	2750	299	1220
Analyte Name	C11 - C22 Aromatics (Unadj.)	C9 - C18 Aliphatics	C19 - C36 Alinhatice

Type of validation	Full:X Limited:	Project Number: Date: Shipping date: EPA Region:	FA42237 _03/20/2017 _03/20/2017 2
REVIEW OF EXT	RACTABLE PETROLE	EUM HYDROCAR	BON (EPHs) PACKAGE
validation actions. This more informed decision were assessed according precedence METHOI HYDROCARBONS (EI (2004). Also the gene Support Section. The (s document will assist the in and in better serving ding to the data validation FOR THE DETERM PH), Massachusetts Deparal validation guidelines	e reviewer in using pathe needs of the design guidance documn MINATION OF Exartment of Environm promulgated by the ation actions listed of	created to delineate required professional judgment to make at a users. The sample results ents in the following order of CTRACTABLE PETROLEUM nental Protection, Revision 1.1 at USEPA Hazardous Wastes on the data review worksheets
The hardcopied (laboreceived has been review for SVOCs included)	iewed and the quality cor	st_Laboratories ntrol and performand	data package ce data summarized. The data
Equipment blank No.:	8 FA42237-2 FA42237-1		
X Data CompleX Holding TimeN/A GC/MS TunirN/A Internal StandX BlanksX Surrogate ReX Matrix Spike/	es ng dard Performance ecoveries	X Laboratory X Field Dupl X Calibration X Compound X Compound X Quantitation	icates ns d Identifications d Quantitation
Overall _Extractable_Petroleur	m_Hydrocarbons_by_GC	_by_Method_MADE	Comments: P_EPH,_REV_1.1
Definition of Qualifiers:			
J- Estimated results U- Compound not Rejected data UJ- Estimated non	detected		
Reviewer:May_7,_20	el Infant_		

		All Criteria were not me	criteria were metx t and/or see below
l.	DATA COMPLETNE A. Data Packag		
<u>MISSI</u>	NG INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
_			
B. 	Other		Discrepancies:

All criteria were met	_X
Criteria were not met and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	ACTION		
FA42237-1	03/20/17	04/18/17	04/19/17	No action.		
Samples extracted and analyzed within method recommended holding time except for the cases described in this document. Sample preservation was appropriate						

Note: Sample FA42237-1 extracted outside holding time for confirmation of surrogate recovery. No action taken, professional judgment.

<u>Criteria</u>

Preservation:

Aqueous samples must be acidified to a pH of 2.0 or less at the time of collection.

Soil samples must be cooled at 4 ± 2 °C immediately after collection.

Holding times:

Samples must be extracted within 14 days of collection, and analyzed within 40 days of extraction.

Cooler temperature (Criteria: 4 ± 2 °C): ___3.2_-_3.6_°C_____

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

Note:

		Crite	All criteria ria were not met and/c	a were metX or see below
CALIBRAT	IONS VERIFIC	ATION		
	at the instrum		nstrument calibration producing and main	
Date	e of initial calib	ration:03/15	/17;_04/10/17	
Dat	es of initial calil	oration verification:_	03/15/16;_04/1	0/17
Inst	rument ID num	bers:FID_	7	
Mat	rix/Level:	_AQUEOUS/MEDIUI	М	
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
Initi	al and initial ca	libration verification	meet method specific r	equirements
11110	ai aira iintai ca	indication voluteation	neer memod specific i	equilements

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be equal to or less than 25% over the working range for the analyte of interest.
 When this condition is met, linearity through the origin may be assumed, and the average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C9-C18 Aliphatic Hydrocarbons, C19-C36 Aliphatic Hydrocarbons, and C11-C22 Aromatic Hydrocarbons using the FID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.
 - The area for the surrogates must be subtracted from the area summation of the range in which they elute.
 - The areas associated with naphthalene and 2-methylnaphthalene in the aliphatic range standard must be subtracted from the uncorrected collective C9-C18 Aliphatic Hydrocarbon range area prior to calculating the CF.

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples or every 24 hours (whichever is more frequent), and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibrat	ion:03/15/17;	04/10/17
Dates of continuing o	calibration verification:_	.03/31/17;_04/05/17;_04/10/17;_04/17/17_ 04/19/17
Dates of final calibra	tion verification:	04/14/17;_04/19/17
Instrument ID numbe	ers:FID_7	
Matrix/Level:	AQUEOUS/MED	IUM

DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
			111 0, 701 (05, 705, 1	711120125
			ic requirements excep r verification included i	
04/14/17	ecc911-4	C9 – C36 Aliphatics	-25.6	FA42237-2

Note: No action taken, professional judgment.

A separate worksheet should be filled for each initial curve

		С	riteria were not m	All criteria were metX et and/or see belowX
V A. BLANK	ANALYSIS RI			
			0.101.010.27	
magnitude of coblanks associate problems with evaluated to decase, or if the part of the p	ontamination placed with the sany blanks etermine whethoroblem is an must be run	problems. The amples, inclued in the exist, all data her or not the isolated occurrence after sample	e criteria for evaluating trip, equipm associated with ere is an inherent urrence not affects suspected of b	etermine the existence and uation of blanks apply only to ent, and laboratory blanks. It the case must be carefully variability in the data for the ting other data. A Laboratory being highly contaminated to
List the contam separately.	ination in the	blanks below	v. High and low k	evels blanks must be treated
Laboratory blan	ks			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_ME1HOD_BD	ANNS_IVIEE I		OD_SPECIFIC_C	CRITERIA
Note:				
<u>Field/</u> Trip/ <u>Equi</u>	<u>pment</u>			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
	VITH_THIS_D	ATA_PACK	_IN_THE_FIELD/I	EQUIPMENT_BLANKS I_THE_CASES
_04/17/17	_FA42237-1	·	C19-C36_Alip	matics_(Unadj.)_87.7_ug/l_ natics67.2_ug/l
_04/14/17	_	_ ·	um_C11-C22_Aro	matics_(Unadj.)_82.5_ug/l

Note: Blank concentration below reporting limits. Sample results below the reporting limits are qualified as non-detects (U) at the reporting limit.

	All criteria were met	
Criteria were	not met and/or see below	Χ

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

All criteria were metX
Criteria were not met and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID	SURROGA	ACTION						
	S1	S2	S3	S4				
_SURROGATE_STANDARDS_RECOVERIES_WITHIN_LABORATORY_CONTROL _LIMITS_EXCEPT_FOR_THE_CASES_DESCRIBED_IN_THIS_DOCUMENT								
_FA42237-1	_35_%	_38_%			No_action			
			33_%					
_FA42237-4			_38_%		_No_action			
_FA42237-4			_39_%					

Note: Surrogates in sample FA42237-1 recovered low due to matrix interference. Confirmed by re-extraction beyond holding time and re-analysis. No action taken, professional judgment.

Surrogate in sample FA42237-4 recovered low due to matrix interference. Confirmed by re-analysis. Not enough sample for re-extraction. No action taken, professional judgment.

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 40% or more than 140%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were metX_	
Criteria were not met and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

MC/MCD Description and Description Criteria

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 40 140% of the true value. Lower recoveries of nnonane are permissible but must be noted in the narrative if <30%.</p>

MISTINISD KECON	enes and Frecision Ci	iteria			
Sample ID:	FA42237-4MS/-4M	Matrix/Level:	_Groundwater_		
1: (55 (1)				
LIST the %RS, RI	PD of the compounds	wnich do no	t meet t	ne QC criteria.	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
					2 702
			·		
·				·	·

Note: MS/MSD % recovery and RPD within laboratory control limits.

			Criteria we	All criteria were not met and/or	vere metX see below
No action is taken informed profession conjunction with or data. In those instaffect only the sar However, it may be a systematic professional control of the control of th	onal judgment, ther QC criteria attances where it in the spiked, the determined through in the analysis.	he data and dete can be o qualifica ough the	reviewer in the state of the st	may use the MS, need for some qual that the results do be limited to this esults that the laboration.	/MSD results in palification of the of the MS/MSD is sample alone, poratory is having
2. MS/MSD –	Unspiked Comp	ounds			
List the concentrat compounds in the					
COMPOUND	CONCENTRA SAMPLE	ATION MS	MSD	%RPD	ACTION
	92				
Criteria: None spec	cified, use %RSD) <u><</u> 50 as	profession	al judgment	
Actions:					

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

	All criteria were metX Criteria were not met and/or see below
VIII.	LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS
This d matrices.	ata is generated to determine accuracy of the analytical method for various
1.	LCS Recoveries Criteria
	List the %R of compounds which do not meet the criteria
_CS ID	COMPOUND % R QC LIMIT ACTION
_LCS/LCSD	_RECOVERY_WITHIN_LABORATORY_CONTROL_LIMTS
_	74.9
Criteri * *	a: Refer to QAPP for specific criteria. The spike recovery must be between 40% and 140%. Lower recoveries of n-nonane are permissible. If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative. RPD between LCS/LCSD must be < 25%.
	s on LCS recovery should be based on both the number of compounds re outside the %R and RPD criteria and the magnitude of the excedance of
he associated f the %R of to for the affected f more than h	the analyte is > UL, qualify all positive results (j) for the affected analyte in d samples and accept nondetects. The analyte is < LL, qualify all positive results (j) and reject (R) nondetects analyte in the associated samples. The compounds in the LCS are not within the required recovery criteria, sitive results as (J) and reject nondetects (R) for all target analyte(s) in the imples.
2. Freque	ency Criteria:
per matrix)? <u>\</u> f f no, the data he effect and	inalyzed at the required frequency and for each matrix (1 per 20 samples fes or No. a may be affected. Use professional judgment to determine the severity of I qualify data accordingly. Discuss any actions below and list the samples uss the actions below:

All criteria were met Criteria were not met and/or see below _N/A									
IX. FIELD/LABORATORY DUPLICATE PRECISION									
Sample IDs:			Matrix:						
Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.									
COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION				
	recision. R		data package. MS/M ry and generally acce above 5 x SQL.						
477									
Criteria:									
The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are $<$ 5 SQL, the RPD criteria is doubled.									
SQL = soil quantitation limit									
Actions:									
if both the samp calculable (NC). N			s are nondetects (N	D), the	RPD is not				
Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.									

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were met _	_X
Criteria were not met and/or see below	

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target EPH
 Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o The n-nonane (n-C9) peak must be adequately resolved from the solvent front of the chromatographic run.
 - o All surrogates must be adequately resolved from the Aliphatic Hydrocarbon and Aromatic Hydrocarbon standards.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.
- 1a. Aliphatic hydrocarbons range:
 - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for n-C9 and 0.01 minutes before the Rt for n-C19.
 - Determine the total area count for all peaks eluting 0.01 minutes before the Rt for n-C19 and 0.1 minutes after the Rt for n-C36.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

- 1b. Aromatic hydrocarbons range:
 - Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for naphthalene and 0.1 minutes after the Rt for benzo(q,h,i)perylene.
 - Determine the peak area count for the sample surrogate (OTP) and fractionation surrogate(s). Subtract these values from the collective area count value.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

	All criteria were metX Criteria were not met and/or see below
2.	If target analytes and/or TICs were not correctly identified, request that the laboratory resubmit the corrected data.
3.	Breakthrough determination - Each sample (field and QC sample) must be evaluated for potential breakthrough on a sample specific basis by evaluating the % recovery of the fractionation surrogate (2-bromonaphthalene) and on a batch basis by quantifying naphthalene and 2-methylnaphthalene in both the aliphatic and aromatic fractions of the LCS and LCSD. If either the concentration of naphthalene or 2-methylnaphthalene in the aliphatic fraction exceeds 5% of the total concentration for naphthalene or 2-methylnaphthalene in the LCS or LCSD, fractionation must be repeated on all archived batch extracts.
	NOTE: The total concentration of naphthalene or 2-methylnaphthalene in the LCS/LCSD pair includes the summation of the concentration detected in the aliphatic fraction and the concentration detected in the aromatic fraction.
	Comments:Concentration_in_the_aliphatic_fraction_<_5%_of_the_totalconcentration_for_naphthalene_and_2-methylnaphthalene
4.	Fractionation Check Standard – A fractionation check solution is prepared containing 14 alkanes and 17 PAHs at a nominal concentration of 200 ng/µl of each constituent. The Fractionation Check Solution must be used to evaluate the fractionation efficiency of each new lot of silica gel/cartridges, and establish the optimum hexane volume required to efficiently elute aliphatic hydrocarbons while not allowing significant aromatic hydrocarbon breakthrough. For each analyte contained in the fractionation check solution, excluding n-nonane, the Percent Recovery must be between 40 and 140%. A 30% Recovery is acceptable for n-nonane.

Is a fractionation check standard analyzed?

Comments: Not applicable.

Yes? or No?

		Criteria were not	All criteria were metX met and/or see below							
XII.	QUANTITATION LIMITS AND SAMPLE RESULTS									
The sa	ample quantitation evalu	uation is to verify laboratory qu	antitation results.							
of C28		bsence of aliphatic mass disc st 0.85. If <0.85, this nonconfo								
		nuing Calibration Standards for vious signs of mass discrimina								
ls alip	hatic mass discriminatio	on observed in the sample?	Yes? or <u>No</u> ?							
Is aron	matic mass discrimination	on observed in the sample?	Yes? or <u>No</u> ?							
1.	In the space below, pl	ease show a minimum of one	sample calculation:							
	FA42237-4MS (C9 – C18, Aliphatics) RF = 0.829 x 10 ⁶									
	[] = 2454983	329/0.829 x 10 ⁶								
	= 296 ppi	n								
2.	If requested, verify the limit (MDLs).	at the results were above the	laboratory method detection							
3.		, were the SQLs elevated ac les and dilution factor in the ta								
	SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION							
-										
	tion was not performed ed samples/compounds	, estimate results (J) for the a	affected compounds. List the							

EXECUTIVE NARRATIVE

SDG No:

FA42237

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8015C

Number of Samples:

8

Location:

BMSMC, Humacao, PR

SUMMARY:

Eight (8) samples were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. MS/MSD % recoveries and RPD within laboratory control limits except for the cases described in the Data Review Worksheet. No qualification made on RPD outside laboratory control limits in sample FA42237-4; professional judgment.

2. Isopropyl alcohol and sec-butyl alcohol recovered high in laboratory control sample (Blank Spike). No action taken, professional judgment. High percent recoveries and no

associated positive reported in the QC batch.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 7, 2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA42237-1

Sample location: BMSM, Humacao, PR

Sampling date: 3/20/2017

Matrix: AQ - Equipment Blank

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	•	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: FA42237-2

Sample location: BMSM, Humacao, PR

Sampling date: 3/20/2017

Matrix: AQ - Field Blank Water

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	0.5	U	Yes
Isopropyl Alcohol	100	ug/l	1.0		U	Yes
n-Propyl Alcohol	100	ug/l	1.0		U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0		IJ	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: FA42237-3

Sample location: BMSM, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0		U	Yes
Isopropyl Alcohol	100	ug/l	1.0	1.2	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	0-1	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: FA42237-4

Sample location: BMSM, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	*	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	20	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	7.	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	*	U	Yes

Sample ID: FA42237-5

Sample location: BMSM, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	•	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	70	U	Yes
n-Propyl Alcohol	100	ug/I	1.0		U	Yes
n-Butyl Alcohol	100	ug/l	1.0	5.1	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: FA42237-6

Sample location: BMSM, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0		U	Yes
n-Butyl Alcohol	100	ug/l	1.0		U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	5.5	υ	Yes
Methanol	200	ug/l	1.0	20	U	Yes

Sample ID: FA42237-4MS

Sample location: BMSM, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwater

-, 5, 5

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	4750	ug/l	1.0	-	-	Yes
Isobutyl Alcohol	5160	ug/l	1.0		-	Yes
Isopropyl Alcohol	5520	ug/l	1.0		-	Yes
n-Propyl Alcohol	5470	ug/l	1.0		-	Yes
n-Butyl Alcohol	5260	ug/l	1.0	7.	5	Yes
sec-Butyl Alcohol	6310	ug/l	1.0	-	-	Yes
Methanol	4550	ug/l	1.0	-	1.7	Yes

Sample ID: FA42237-4MSD

Sample location: BMSM, Humacao, PR

Sampling date: 3/20/2017 Matrix: Groundwater

METHOD: 8015C

***************************************	00200					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	4090	ug/l	1.0	•	-	Yes
Isobutyl Alcohol	5710	ug/l	1.0	-	34	Yes
Isopropyl Alcohol	6030	ug/l	1.0	-	1-	Yes
n-Propyl Alcohol	5330	ug/l	1.0	-	- 4	Yes
n-Butyl Alcohol	5190	ug/l	1.0	**	-	Yes
sec-Butyl Alcohol	6230	ug/l	1.0		-	Yes
Methanol	7190	ug/l	1.0		, 4	Yes

	Project Number:FA42237
	Date:03/20/2017
	Shipping Date: 03/20/2017
	EPA Region: 2
REVIEW OF VOLATILE OF The following guidelines for evaluating volatile organics were document will assist the reviewer in using professional judes serving the needs of the data users. The sample results guidance documents in the following order of preceder Physical/Chemical Methods SW-846 (Final Update III, Deceutilized. The QC criteria and data validation actions listed guidance document, unless otherwise noted. The hardcopied (laboratory name) _Accutest,_New_Jersey reviewed and the quality control and performance data summer services.	re created to delineate required validation actions. This digment to make more informed decision and in better were assessed according to USEPA data validation ence: "Test Methods for Evaluating Solid Waster 1996)," specifically for Methods 8000/8015C and on the data review worksheets are from the primare data package received has been
Lab. Project/SDG No.:FA42237	Sample matrix:Groundwater
No. of Samples: 8	
Trip blank No.: Field blank No.:FA42237-2 Equipment blank No.:FA42237-1 Field duplicate No.:X Data Completeness	
X Bata Completeness X Holding Times	
N/A CC/MS Tuning	X Field Duplicates
N/A_ GC/MS Tuning N/A_ Internal Standard Performance	X Calibrations
N/A_ internal Standard Performance	X Compound Identifications
	X Compound Quantitation
X Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Quantitation Limits
Overall Comments:_Low_molecular_weight_alcohols_	by_SW-846_8015C
Definition of Qualifiers:	
J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated nondetect Reviewer: Reviewer:	
Date:May_7,_2017	
Dateiviay_1,_2011	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
_		
		
		- 950

All criteria were metX	
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
All samples analy	zed within the recon	nmended method holdir	g. All sa	imples properly preserved.
Received at Accur	tes, New Jersey at a t	temperature of 5°C.		

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles. Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Groundwater samples- 7 days from sample collection. Cooler temperature (Criteria: 4 + 2 °C): 3.2 - 3.6°C

<u>Actions</u>

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R). If the % solids of Groundwater samples is 10-50%, estimates positive results (J) and nondetects (UJ) If the % solid of Groundwater samples is < 10%, estimate positive results (J) and reject nondetects (R). If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

	criteria were metN/A not met see below
GC/MS TUNING	
The assessment of the tuning results is to determine if the sample instrumentation is wit tuning QC limits	thin the standard
N/A_ The BFB performance results were reviewed and found to be within the specified	l criteria.
N/A_ BFB tuning was performed for every 12 hours of sample analysis.	
If no, use professional judgment to determine whether the associated data should be ac or rejected.	cepted, qualified
List the samples affected:	
If mass calibration is in error, all associated data are rejected.	

All criteria were met _	_X
Criteria were not met	
and/or see below	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

	Da	te of initial calibration:	10/10/16		
	Da	ites of continuing calibra	tion:03/27/17		
	Da	ites of final calibration ve	erification:03/27/17		_
	Ins	strument ID number:	GCGH		
	Ma	atrix/Level:	Aqueous/low		
DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED	-

Note: Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the two columns. Final calibration verification included in data packages.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be \leq 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _X	
Criteria were not met	
and/or see below	

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
Field/Equipme				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_	*	, ,	•	/zed_with_this_data_packageNo
	104 - 2110			

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
	COMPOUND	COMPOUND CONC/UNITS	COMPOUND CONC/UNITS AL/UNITS	COMPOUND CONC/UNITS AL/UNITS SQL

All criteria were metX	_
Criteria were not met	
and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

SAMPLE ID		SURROGATE	COMPOUND		ACTION
	Hexar	nol DBFM	TOL-d8	BFB	
	S1 a	S1 b			
FA42237-1	77	77			
FA42237-2	93	90			
FA42237-3	91	89			
FA42237-4	82	74			
FA42237-5	90	106			
FA42237-6	87	108			
FA42237-4MS	84	81			
FA42237-4MSD	80	77			
GGH5696-BS	108	112			
GGH5696-MB1	94	83			
GGH5696-MB2	84	77			

- (a) Recovery from GC signal #2
- (b) Recovery from GC signal #1

Note: All surrogate recoveries within laboratory control limits.

QC Limits* (Aqueous)				
LL_to_UL	_56_to_145_	to	to	to
QC Limits* (Solid-Low)				
LL_to_UL	to	to	to	to
QC Limits* (Solid-Med)				
LL_to_UL	to	to	to	to

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met_	
Criteria were not met	
and/or see below	_X

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:FA	442237-4MS/-4MSD_			Matrix/Level:	Groundwater/medium
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
	ecoveries_and_RPD_ ent				cept_for_the_cases_described_
MS/MSD	Methanol		45%_	34_%	No_action

Note: No qualification made based on RPD results, professional judgment.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All criteria were met_	Х_	
Criteria were not met		
and/or see below	_	

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD – Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	vel/Unit:	
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
	_				
					*10

Actions:

A separate worksheet should be used for each MS/MSD pair.

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _	Х_	_
Criteria were not met		
and/or see below		

QC LIMIT

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

LCS ID

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

% R

List the %R of compounds which do not meet the criteria

COMPOUND

____Recoveries_within_laboratory_control_limits_except_for_the_cases_described_in_this_document.__
____GGH5696-BS_____lsopropyl Alcohol_______133*_______76_-_121_____
____sec-Butyl Alcohol______126*____74_-_118_____

Note: No action taken, professional judgment. High percent recoveries and no associated positive reported in the QC batch.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were met
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that Groundwater duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 30% for aqueous samples, RPD ± 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
	No field/laboratory duplicates analyzed with this data package. MS/MSD % recoveries RPD used to assess precision. RPD within laboratory, generally acceptable and guidance document				
10 000000	performance criteria control limits.				

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

Actions:

All criteria were metN/A
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
<u> </u>					
-		989			

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%	IS AREA = -25 % TO - 50%	IS AREA > + 100%
Positive results	J	J	J
Nondetected results	R	UJ	ACCEPT

2. If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _X
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sec-Butyl alcohol

$$RF = 26.42$$

$$[] = (134624)/(26.42)$$

All criteria were met _X	
Criteria were not met	
and/or see below	

XII.	QUAN		NOIT	LIMITS
/ XIII	WO' 11 4	1 4 4 5		

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
· · · · · · · · · · · · · · · · · · ·		

В.	Percent Solids
	List samples which have ≤ 50 % solids
	- W

Actions:

If the % solids of a Groundwater sample is 10-50%, estimate positive results (J) and nondetects (UJ) $\,$

If the % solids of a Groundwater sample is < 10%, estimate positive results (J) and reject nondetects (R)

EXECUTIVE NARRATIVE

SDG No:

FA42237

Laboratory:

Accutest, Orlando

Analysis:

SW846-8081B

Number of Samples:

6

Location:

BMSMC, Humacao, PR

SUMMARY:

Six (6) samples were analyzed for the TCL pesticides list following method SW846-8081B. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence *Hazardous Waste Support Section SOP No. HW-36A, Revision O, June, 2015. SOM02.2. Pesticide Data Validation.* The QC criteria and data validation actions listed on the data review worksheets are from the primary

guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

Major:

None

None

Minor:

None

Critical findings:

Major findings:

None None

Minor findings:

1. MS/MSD % recoveries and RPD within laboratory control limits except for the cases described in the Data Review Worksheet. No qualification made professional judgment.

Analytes recovered high and not detected in sample batch.

No qualification made based on RPD results, professional judgment.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 7, 2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA42237-1

Sample location: BMSMC, Humacao, PR Sampling date: 20-Mar-17

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units Dilu	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.040	ug/l	1	ŧ	_	Yes
alpha-BHC	0.040	ug/l		ı	_	Yes
beta-BHC	0.040	ug/l	–	,	_	Yes
delta-BHC	0.040	ug/l	L	e	C	Yes
gamma-BHC (Lindane)	0.040	ug/l	1	q	C	Yes
alpha-Chlordane	0.040	l/gu	Ľ	c	C	Yes
gamma-Chlordane	0.040	ug/l	Ľ	τ	C	Yes
Dieldrin	0.040	ug/I	1	e	C	Yes
4,4'-DDD	0.080	ug/I	ı	,	C	Yes
4,4'-DDE	0.080	ug/I	Þ	c	C	Yes
4,4'-DDT	0.080	ug/l	ר	я	C	Yes
Endrin	0.080	ug/l	┙	i);	_	Yes
Endosulfan sulfate	0.080	ug/I	₽	11	_	Yes
Endrin aldehyde	0.080	ug/l	ב			Yes
Endrin ketone	0.080	l/gu	ш	,	C	Yes
Endosulfan-l	0.040	l/gu	1	ı	–	Yes
Endosulfan-II	0.040	l/gu	∺	r	C	Yes
Heptachlor	0.040	l/gu	1	ा	⊂	Yes
Heptachlor epoxide	0.040	l/gu	1	ĸ	C	Yes
Methoxychlor	0.080	ug/l	1	o	C	Yes
Toxaphene	2.0	ug/i	1	,	C	Yes

Sample ID: FA42237-2

Sample location: BMSMC, Humacao, PR Sampling date: 20-Mar-17

Matrix: AQ - Field Blank Water

HOD: 8081B		!		
Result		Lab Flag	Validation	Reportable
0.040	ug/i 1	,	_	Yes
0.040	ug/l 1	•	C	Yes
0.040	ug/l 1	,	C	Yes
0.040	ug/l 1		C	Yes
0.040	ug/l 1	c	C	Yes
0.040	ug/l 1		C	Yes
0.040	ug/l 1	6	C	Yes
0.040	ug/l 1	,	C	Yes
0.080	ug/l 1		C	Yes
0.080	ug/l 1	1	C	Yes
0.080	ug/l 1	r.	_	Yes
0.080	ug/l 1	ì	C	Yes
0.080	ug/l 1	ı	C	Yes
0.080	ug/l 1	3	C	Yes
0.080	ug/i 1		⊂	Yes
0.040	ug/l 1	ì	C	Yes
0.040	ug/l 1	1	C	Yes
0.040	ug/l 1		C	Yes
0.040	ug/l 1	1	C	Yes
0.080	ug/l 1	×	C	Yes
2.0	ug/l 1	9	C	Yes
	Result 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	Result Units Dilution Factor 0.040 ug/l 1 0.080 ug/l 1 0.040 ug/l 1 0.040 ug/l 1	ult Units 40 ug/1 40 ug/1 40 ug/1 40 ug/1 40 ug/1 40 ug/1 80 ug/1	ult Units Dilution Factor 40 ug/l 1 80 ug/l 1

Sample ID: FA42237-4
Sample location: BMSMC, Humacao, PR
Sampling date: 20-Mar-17

Matrix: Groundwater

**F1100:	COCHE					
Analyte Name	Result	Units Dilut	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.040	l/gu		•	C	Yes
alpha-BHC	0.040	ug/I	1– 2	•	C	Yes
beta-BHC	0.040	ug/I		•	C	Yes
delta-BHC	0.040	ug/I	<u></u>	v.	C	Yes
gamma-BHC (Lindane)	0.040	ug/I	L	Si	C	Yes
alpha-Chlordane	0.040	ug/I	⊢	ï	C	Yes
gamma-Chlordane	0.040	ug/I	-	i i	C	Yes
Dieldrin	0.040	ug/l	-	E	_	Yes
4,4'-DDD	0.080	ug/I	⊢	ų	_	Yes
4,4'-DDE	0.080	ug/i	-	•	C	Yes
4,4'-DDT	0.080	ug/l	↦		_	Yes
Endrin	0.080	ug/i	1	•	C	Yes
Endosulfan sulfate	0.080	ug/l	↦	,	_	Yes
Endrin aldehyde	0.080	ug/i	↦	ı	_	Yes
Endrin ketone	0.080	ug/i	↦	ı	_	Yes
Endosulfan-l	0.040	ug/i	↦	,	_	Yes
Endosulfan-II	0.040	ug/l	₩	,	_	Yes
Heptachlor	0.040	ug/l	↦	•	C	Yes
Heptachlor epoxide	0.040	l/gu	↦	•	C	Yes
Methoxychlor	0.080	ug/i	↦	,	_	Yes
Toxaphene	2.0	ug/l	⊭	,	_	Yes

Sample ID: FA42237-5
Sample location: BMSMC, Humacao, PR
Sampling date: 20-Mar-17

Matrix: Groundwater

Analyte Name Aldrin	Result 0.040	Units ug/l	Dilution Factor 1	Lab Flag	Validation U	Reportable Yes
delta-BHC	0.040	/gu	₩ #	,	C (Yes
gamma-BHC (Lindane)	0.040	ug/l	1	•	C	Yes
alpha-Chlordane	0.040	l/gu	1	1	_	Yes
gamma-Chlordane	0.040	l/gu	1	ř	C	Yes
Dieldrin	0.040	ug/l	1	1	C	Yes
4,4'-DDD	0.080	l/gu	1	•	C	Yes
4,4'-DDE	0.080	ug/l	1	1	C	Yes
4,4'-DDT	0.080	l/gu	₩	i,	C	Yes
Endrin	0.080	l/gu	↦	,	_	Yes
Endosulfan sulfate	0.080	l/gu	1	ı	_	Yes
Endrin aldehyde	0.080	l/gu	1	,	C	Yes
Endrin ketone	0.080	l/gu	1		⊂	Yes
Endosulfan-l	0.040	l/gu	1		_	Yes
Endosulfan-II	0.040	l/gu	1	e	C	Yes
Heptachlor	0.040	1/gu	1	,	C	Yes
Heptachlor epoxide	0.040	l/gu	1		_	Yes
Methoxychlor	0.080	l/gu	₽	,	C	Yes
Toxaphene	2.0	l/gu	1		C	Yes

Sample ID: FA42237-4MS

Sample location: BMSMC, Humacao, PR Sampling date: 20-Mar-17

Matrix: Groundwater

Result	Units Dilu	ition Factor	Lab Flag	Validation	Reportable
1.2	ug/I	Ľ	,	,	Yes
1.2	ug/I	H	,	,	Yes
1.3	l/gu	1		r	Yes
1.3	ng/I	1	,	1	Yes
1.3	ug/I	1	,	ï	Yes
1.3	ug/I	1	ï	,	Yes
1.4	ug/I	1		•	Yes
1.2	ug/I	1		•	Yes
1.2	ug/I	ר	,	,	Yes
1.2	ug/I	L	ı	,	Yes
1.4	ug/I	₽		ı	Yes
1.2	ug/I	 	,	ı	Yes
1.2	ug/I	н	,	1	Yes
1.2	ug/I	ь	,	,	Yes
1.3	ug/l	H	1	ı	Yes
1.1	l/gu	1	,	,	Yes
1.1	l/gu	1	ı	,	Yes
1.2	ug/I	1	ı	1	Yes
1.2	ug/I	ъ	,	1	Yes
1.4	ug/I	⊣	ı	ſ	Yes
	Result 1.2 1.3 1.3 1.3 1.3 1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Units		Units Dilution Factor ug/l 1 ug/l 1	Units Dilution Factor Lab Flag ug/l 1 ug/l 1

Sample ID: FA42237-4MSD

Sample location: BMSMC, Humacao, PR Sampling date: 20-Mar-17

Matrix: Groundwater

Analyte Name	Result	Units Dilution Factor		Lab Flag	Validation	Reportable
Aldrin	1.5	ug/i	_	1	,	Yes
alpha-BHC	1.5	ug/l	1	r	τ	Yes
beta-BHC	1.6	ug/i	1	ı	ı	Yes
delta-BHC	1.6	ug/l	1	ı	•	Yes
gamma-BHC (Lindane)	1.6	ug/l	1	9	j.	Yes
alpha-Chlordane	1.7	ug/l	1	i)	Yes
gamma-Chlordane	1.7	ug/l	1	ı	•	Yes
Dieldrin	1.5	ug/l	ш	•		Yes
4,4'-DDD	1.5	ug/l	ш-	1	1	Yes
4,4'-DDE	1.4	ug/l	1	ı	•	Yes
4,4'-DDT	1.8	ug/l		ı		Yes
Endrin	1.5	ug/l	1	•	•	Yes
Endosulfan sulfate	1.6	ug/l	_	•	•	Yes
Endrin aldehyde	1.6	ug/l	1	1	1	Yes
Endrin ketone	1.7	ug/1 :	_	1	•	Yes
Endosulfan-l	1.3	ug/l	1	ı	•	Yes
Endosulfan-II	1.4	ug/l	_	,	,	Yes
Heptachlor	1.5	ug/l	1	•	ı	Yes
Heptachlor epoxide	1.5	ug/l	_	•	•	Yes
Methoxychlor	1.8	ug/l	_	•	•	Yes

	Project/CasNumber:FA42237 Sampling Date:03/20/2017
	Shipping Date:03/20/2017 EPA Region No.:2
REVIEW OF PESTICIDE ORG	SANIC PACKAGE
The following guidelines for evaluating volatile organization actions. This document will assist the reversal make more informed decision and in better service sample results were assessed according to USEPA the following order of precedence Hazardous Was Revision 0, June, 2015. SOM02.2. Pesticide Data validation actions listed on the data review works document, unless otherwise noted.	riewer in using professional judgment to ing the needs of the data users. The A data validation guidance documents in aste Support Section SOP No. HW-36A Validation. The QC criteria and data
The hardcopied (laboratory name) _Accutest	
Lab. Project/SDG No.:FA42237 No. of Samples:6 Trip blank No.:	Sample matrix:Groundwater_
Trip blank No.:	
X Data CompletenessX Holding TimesN/A GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	XLaboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Overall Comments:Dieldrin_by_SW846-8081B	
·	und not detected ed nondetect

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
-		
	1,000	

All criteria were met _	_X
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE	DATE	ACTION
	SAMPLED	EXTRACTED/ANALYZED	
Samples properly	preserved. All samp	oles extracted and analyzed wi	thin the required criteria.

Note:

<u>Criteria</u>

Aqueous samples - seven (7) days from sample collection for extraction; 40 days from sample collection for analysis.

Non-aqueous samples – fourteen (14) days from sample collection for extraction; 40 days from sample collection for analysis.

Cooler temperature (Criteria: 4 + 2 °C): 3.2 – 3.6 °C - OK

Actions

Qualify aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed within the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding times, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.

- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

Qualify non-aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed within the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding time, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.
- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

All criteria were metX	
Criteria were not met see below	

GAS CHROMATOGRAPH WITH ELECTRON CAPTURE DETECTOR (GC/ECD) INSTRUMENT PERFORMANCE CHECK (SECTIONS 1 TO 5)

1. Resolution Check Mixture

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 60.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

2. Performance Evaluation Mixture (PEM) Resolution Criteria

Criteria

Is PEM analysis performed at the required frequency (at the end of each pesticide initial calibration sequence and every 12 hours)?

Yes? or No?

Action

a. If PEM is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

Criteria

Is PEM % Resolution < 90%?

Yes? or No?

Action

- a. a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

	All criteria were metX_	_
Criteria	were not met see below	

3. PEM 4,4'-DDT Breakdown

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

4. PEM Endrin Breakdown

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated(J)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

All criteria were metX
Criteria were not met see below

5. Mid-point Individual Standard Mixture Resolution -

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 90.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

Criteria

Is mid-point individual standard mixture analysis performed at the required frequency (every 12 hours)?

Yes? or No?

Action

a. If the mid-point individual standard mixture analysis is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

All criteria were met	X
Criteria were not met	
and/or see below	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	03/24/17
Dates of initial calibration verification:	03/24/17
Dates of continuing calibration:	03/30/17
Dates of final calibration	<u> </u>
Instrument ID numbers:	
Matrix/Level:	Aqueous/low

DATE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
-			

Note: Initial and initial calibration verification within the guidance document performance criteria. Continuing calibration % differences meet the performance criteria in at least one of the two columns.

Final calibration verification included in data package.

Criteria

Are a five point calibration curve delivered with concentration levels as shown in Table 3 of SOP HW-36A, Revision 0, June, 2015?

Yes? or No?

Actions

If the standard concentrations listed in Table 3 are not used, use professional judgment to evaluate the effect on the data

Criteria

Are RT Windows calculated correctly?

Yes? or No?

Action

Recalculate the windows and use the corrected values for all evaluations.

Criteria

Are the Percent Relative Standard Deviation (%RSD) of the CFs for each of the single component target compounds less than or equal to 20.0%, except for alpha-BHC and delta-BHC?

Yes? or No?

All criteria were met __X__ Criteria were not met and/or see below

Are the %RSD of the CFs for alpha-BHC and delta-BHC less than or equal to 25.0%. Yes? or No?

Is the %RSD of the CFs for each of the Toxaphene peaks must be < 30% when 5-point ICAL is performed?

Yes? or No?

Is the %RSD of the CFs for the two surrogates (tetrachloro-m-xylene and decachlorobiphenyl) less than or equal to 30.0%.

Yes? or No?

Action

- a. If the %RSD criteria are not met, qualify detects as estimated (J) and use professional judgment to qualify non-detected target compounds.
- b. If the %RSD criteria are within allowable limits, no qualification of the data is necessary

Continuing Calibration Checks

Criteria

Is the continuing calibration standard analyzed at the acceptable time intervals? Yes? or No?

Action

- a. If more than 14 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of either a PEM or mid-point concentration of the Individual Standard Mixtures (A and B) or (C), qualify all data as unusable (R).
- b. If more than 12 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of the last sample or blank that is part of the same analytical sequence, qualify all data as unusable (R).
- c. If more than 72 hours has elapsed from the injection of the sample with a Toxaphene detection and the Toxaphene Calibration Verification Standard (CS3), qualify all data as unusable (R).

Criteria

Is the Percent Difference (%D) within ±25.0% for the PEM sample?

Yes? or No?

Action

a. Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

For the Calibration Verification Standard (CS3); is the Percent Difference (%D) within ± 25.0%? Yes? or No?

Action

Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

- a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

- a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

A separate worksheet should be filled for each initial curve

All criteria were met _	X_	_
Criteria were not met		
and/or see below		

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contami	ination in the bla	anks below. Hig	h and low levels blanks	s must be treated separately.
CRQL concentr	ationN	/A		
Laboratory blan	ks			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_target_anal	ytes_detected_i	in_method_blar	nks_at_a_reporting_lim	it_of_0.04,_0.08_and_2.0_ug/l
Field/Equipme	<u>nt/</u> Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
 _No_target_ana	alytes_detected	_in_the_field/ed	լսipment_blanks_analy	 zed_with_this_data_package
				- 332-2
		280		19609

All criteria were metX	
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

The concentration of non-target compounds in all blanks must be less than or equal to 10 μ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method.

Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

Specific actions are as follows:

Blank Actions for Pesticide Analyses

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CRQL	< CRQL	Report CRQL value with a U
Method, Sulfur Cleanup, Instrument, Field, TCLP/SPLP		≥ CRQL	No qualification required
		< CRQL	Report CRQL value with a U
	> CRQL	≥ CRQL and ≤ blank concentration	Report blank value for sample concentration with a U
		≥ CRQL and > blank concentration	No qualification required
	= CRQL	≤ CRQL	Report CRQL value with a U
		> CRQL	No qualification required
	Gross contamination	Detects	Report blank value for sample concentration with a U

All criteria were met _	_X	
Criteria were not met		
and/or see below	_	

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were met __X__ Criteria were not met and/or see below____

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix:_Aqueous/Solid								
Lab Sample ID	Lab File ID	S1 a	S2 a					
FA42237-1	KK82506.D	77	83					
FA42237-2	KK82507.D	84	83					
FA42237-4	KK82508.D	78	84					
FA42237-5	KK82511.D	79	95					
OP64363-BS	KK82503.D	79	85					
OP64363-BS2	KK82504.D	74	68					
OP64363-MB	KK82505.D	76	83					
OP64363-MS	KK82509.D	78	86					
OP64363-MSD	KK82510.D	92	98					

Recovery Limits (Aqueous)

S1 = Tetrachloro-m-xylene S2 = Decachlorobiphenyl 42-127% 27-127%

- (a) Recovery from GC signal #1
- (b) Outside control limits.

Note: Surrogate recoveries were within laboratory control limits.

Actions:

- a. For any surrogate recovery greater than 150%, qualify detected target compounds as biased high (J+).
- b. Do not qualify non-detected target compounds for surrogate recovery > 150 %.
- c. If both surrogate recoveries are greater than or equal to 30% and less than or equal to 150%, no qualification of the data is necessary.
- d. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify detected target compounds as biased low (J-).
- e. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify non-detected target compounds as approximated (UJ).

- f. If low surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. If sample dilution is not a factor:
 - i. Qualify detected target compounds as biased low (J-).
 - ii. Qualify non-detected target compounds as unusable (R).
- g. If surrogate RTs in PEMs, Individual Standard Mixtures, samples, and blanks are outside of the RT Windows, the reviewer must use professional judgment to qualify data.
- h. If surrogate RTs are within RT windows, no qualification of the data is necessary.
- i. If the two surrogates were not added to all samples, MS/MSDs, standards, LCSs, and blanks, use professional judgment in qualifying data as missing surrogate analyte may not directly apply to target analytes.

Summary Surrogate Actions for Pesticide Analyses

	Action*					
Criteria	Detected Target Compounds	Non-detected Target Compounds				
%R > 150%	J+	No qualification				
30% < %R < 150%	No qualification					
10% < %R < 30%	J-	UJ				
%R < 10% (sample dilution not a factor)	J-	R				
%R < 10% (sample dilution is a factor)	Use professional judgment					
RT out of RT window	Use professional judgment					
RT within RT window	No qua	alification				

^{*} Use professional judgment in qualifying data, as surrogate recovery problems may not directly apply to target analytes.

All criteria were met		_
Criteria were not met		
and/or see below	_X	

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory Program Project Officer (CLP PO) if a field blank was used for the MS and MSD, unless designated as such by the Region.

NOTE: For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

	FA42237-4	Spike	MS	MS	Spike	MSD	MSD	Limits
The QC reported here applies to the following samples: FA42237-1, FA42237-2, FA42237-4, FA42237-5							Method	d: SW846 8081B
Sample ID:		Matrix/	Level:	_Groundwater				

	FA4223	17-4	Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	ug/i	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
Aldrin	ND		1	1.2	120	1	1.5	150*	22*	61-126/21
alpha-BHC	ND		1	1.2	120	1	1.5	150*	22	66-129/23
beta-BHC	ND		1	1.3	130	1	1.6	160*	21	66-132/23
delta-BHC gamma-BHC	ND		1	1.3	130	1	1.6	160*	21	41-142/27
(Lindane)	ND		1	1.3	130	1	1.6	160*	21	68-132/22
alpha-Chlordane	ND		1	1.3	130	1	1.7	170*	27*	66-131/24
gamma-Chlordane	ND		1	1.4	140*	1	1.7	170*	19	68-128/21
Dieldrin	ND		1	1.2	120	1	1.5	150*	22	66-138/22
4,4'-DDD	ND		1	1.2	120	1	1.5	150*	22	63-138/24
4,4'-DDE	ND		1	1.2	120	1	1.4	140*	15	59-133/23
4,4'-DDT	ND		1	1.4	140	1	1.8	180*	25	55-145/27
Endrin	ND		1	1.2	120	1	1.5	150*	22	71-147/23
Endosulfan sulfate	ND		1	1.2	120	1	1.6	160*	29*	64-128/26
Endrin aldehyde	ND		1	1.2	120	1	1.6	160*	29*	60-130/22
Endrin ketone	ND		1	1.3	130	1	1.7	170*	27*	66-137/25
Endosulfan-II	ND		1	1.1	110	1	1.4	140*	24*	65-133/22
Heptachlor	ND		1	1.2	120	1	1.5	150*	22	63-130/23

Compound	FA4223 ug/l	7-4 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
Heptachlor epoxid Methoxychlor	e ND ND		1	1.2 1.4	120 140*	1 1	1.5 1.8	150* 180*	22 25	67-129/23 60-136/25

Note: MS/MSD % recoveries and RPD within laboratory control limits except for the cases described in this document. No qualification made professional judgment. Analytes recovered high and not detected in sample batch.

No qualification made based on RPD results; professional judgment.

Action

No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _	X.	_
Criteria were not met		
and/or see below		

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

LCS Spike Compound	Recovery Limits (%)
gamma-BHC	50 – 120
Heptachlor epoxide	50 – 150
Dieldrin	30 – 130
4,4'-DDE	50 – 150
Endrin	50 – 120
Endosulfan sulfate	50 – 120
trans-Chlordane	30 – 130
Tetrachloro-m-xylene (surrogate)	30 – 150
Decachlorobiphenyl (surrogate)	30 – 150

LCS concentrations	:1_ug/l		
List the %R of compounds w	hich do not meet the criteria		
LCS ID	COMPOUND	% R	QC LIMIT
%_recovery_and_RPD_	within_laboratory_control_lim	nits	
	(0,0.1		
	2		
	39		
Noto:			

Action

The following guidance is suggested for qualifying sample data for which the associated LCS does not meet the required criteria.

- a. If the LCS recovery exceeds the upper acceptance limit, qualify detected target compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the LCS recovery is less than the lower acceptance limit, qualify detected target compounds as estimated (J) and non-detects as unusable (R).
- c. Use professional judgment to qualify data for compounds other than those compounds that are included in the LCS.

- d. Use professional judgment to qualify non-LCS compounds. Take into account the compound class, compound recovery efficiency, analytical problems associated with each compound, and comparability in the performance of the LCS compound to the non-LCS compound.
- e. If the LCS recovery is within allowable limits, no qualification of the data is necessary.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

All criteria were met
Criteria were not met
and/or see belowN/A

FLORISIL CARTRIDGE PERFORMANCE CHECK

NOTE: Florisil cartridge cleanup is mandatory for all extracts.

Criteria

Is the Florisil cartridge performance check conducted at least once on each lot of cartridges used for sample cleanup or every 6 months, whichever is most frequent? Yes? or No? N/A

Criteria

Are the results for the Florisil Cartridge Performance Check solution included with the data package?

Yes? or No? N/A

Note: If % criteria are not met, examine the raw data for the presence of polar interferences and use professional judgment in qualifying the data as follows:

Action:

- a. If the Percent Recovery is greater than 120% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- c. If the Percent Recovery is greater than or equal to 10% and less than 80% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is less than 10% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J) and qualify non-detected target compounds as unusable (R).
- e. If the Percent Recovery of 2,4,5-trichtorophenol in the Florisil Cartridge Performance Check is greater than or equal to 5%, use professional judgment to qualify detected and non-detected target compounds, considering interference on the sample chromatogram.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the Florisil Cartridge Performance Check analysis not yielding acceptable results.

Note: No information for Florisil cartridge performance check included in data package.

All criteria were met	
Criteria were not met	
and/or see below	

GEL PERMEATION CHROMATOGRAPHY (GPC) PERFORMANCE CHECK

NOTE: GPC cleanup is mandatory for all soil samples.

If GPC criteria are not met, examine the raw data for the presence of high molecular weight contaminants; examine subsequent sample data for unusual peaks; and use professional judgment in qualifying the data. Notify the Contract Laboratory Program Project Officer (CLP PO) if the laboratory chooses to analyze samples under unacceptable GPC criteria.

Action:

- a. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, the non-detected target compounds may be suspect, qualify detected compounds as estimated (J).
- b. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, qualify all non-detected target compounds as unusable (R).
- c. If the Percent Recovery is greater than or equal to 10% and is less than 80% for any of the pesticide target compounds in the GPC calibration, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- e. If high recoveries (i.e., greater than 120%) were obtained for the pesticides and surrogates during the GPC calibration check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the GPC cleanup analyses not yielding acceptable results.

Note: No information for performance of GPC cleanup included in data package.

All criteria were met	_X	_
Criteria were not met		
and/or see below		

TARGET COMPOUND IDENTIFICATION

Criteria:

- 1. Is Retention Times (RTs) of both of the surrogates and reported target compounds in each sample within the calculated RT Windows on both columns?

 Yes? or No?
- 2. Is the Tetrachloro-m-xylene (TCX) RT ±0.05 minutes of the Mean RT (RT) determined from the initial calibration and Decachlorobiphenyl (DCB) within ±0.10 minutes of the RT determined from the initial calibration?

 Yes? or No?
- 3. Is the Percent Difference (%D) for the detected mean concentrations of a pesticide target compound between the two Gas Chromatograph (GC) columns within the inclusive range of ± 25.0 %?

 Yes? or No?
- 4. When no analytes are identified in a sample; are the chromatograms from the analyses of the sample extract and the low-point standard of the initial calibration associated with those analyses on the same scaling factor?

 Yes? or No?
- 5. Does the chromatograms display the Single Component Pesticides (SCPs) detected in the sample and the largest peak of any multi-component analyte detected in the sample at less than full scale.

 Yes? or No?
- 6. If an extract is diluted; does the chromatogram display SCPs peaks between 10-100% of full scale, and multi-component analytes between 25-100% of full scale? Yes? or No? N/A
- 7. For any sample; does the baseline of the chromatogram return to below 50% of full scale before the elution time of alpha-BHC, and also return to below 25% of full scale after the elution time of alpha-BHC and before the elution time of DCB?

 Yes? or No?
- 8. If a chromatogram is replotted electronically to meet these requirements; is the scaling factor used displayed on the chromatogram, and both the initial chromatogram and the replotted chromatogram submitted in the data package.

 Yes? or No?

Action:

- a. If the qualitative criteria for both columns were not met, all target compounds that are reported as detected should be considered non-detected.
- b. Use professional judgment to assign an appropriate quantitation limit using the following guidance:
 - If the detected target compound peak was sufficiently outside the pesticide RT Window, the reported values may be a false positive and should be replaced with the sample Contract Required Quantitation Limits (CRQL) value.

- ii. If the detected target compound peak poses an interference with potential detection of another target peak, the reported value should be considered and qualified as unusable (R).
- c. If the data reviewer identifies a peak in both GC column analyses that falls within the appropriate RT Windows, but was reported as a non-detect, the compound may be a false negative. Use professional judgment to decide if the compound should be included.

Note: State in the Data Review Narrative all conclusions made regarding target compound identification.

- d. If the Toxaphene peak RT windows determined from the calibration overlap with SCPs or chromatographic interferences, use professional judgment to qualify the data.
- e. If target compounds were detected on both GC columns, and the Percent Difference between the two results is greater than 25.0%, consider the potential for coelution and use professional judgment to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, use professional judgment to determine how best to report, and if necessary, qualify the data according to these guidelines.
- f. If Toxaphene exhibits a marginal pattern-matching quality, use professional judgment to establish whether the differences are due to environmental "weathering" (i.e., degradation of the earlier eluting peaks relative to the later eluting peaks). If the presence of Toxaphene is strongly suggested, report results as presumptively present (N).

GAS CHROMATOGRAPH/MASS SPECTROMETER (GC/MS) CONFIRMATION

NOTE: This confirmation is not usually provided by the laboratory. In cases where it is provided, use professional judgment to determine if data qualified with "C" can be salvaged if it was previously qualified as unusable (R).

Action:

- a. If the quantitative criteria for both columns were met (\geq 5.0 ng/ μ L for SCPs and \geq 125 ng/ μ L for Toxaphene), determine whether GC/MS confirmation was performed. If it was performed, qualify the data using the following guidance:
 - i. If GC/MS confirmation was not required because the quantitative criteria for both columns was not met, but it was still performed, use professional judgment when evaluating the data to decide whether the detect should be qualified with "C".
 - ii. If GC/MS confirmation was performed, but unsuccessful for a target compound detected by GC/ECD analysis, qualify those detects as "X".

All criteria were met	_X_	
Criteria were not met		
and/or see below	_	

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

FA42237-1

tetra-chloro-m-xylene

RF = 5.425 X 104

[] =

(2088006)/(5.425 X 104)

= 38.5 ppb

Ok

Note:

Action:

- a. If sample quantitation is different from the reported value, qualify result as unusable (R).
- b. When a sample is analyzed at more than one dilution, the lowest CRQLs are used unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample.
- c. Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its corresponding value on the original reporting form and substituting the data from the diluted sample.
- d. Results between the MDL and CRQL should be qualified as estimated (J).
- e. Results less than the MDL should be reported at the CRQL and qualified (U). MDLs themselves are not reported.
- f. For non-aqueous samples, if the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table).

Percent Moisture Actions for Pesticide Analysis for Non-Aqueous Samples

Criteria	Action		
	Detected Associated Compounds	Non-detected Associated Compounds	
% Moisture < 70.0	No qualification		
70.0 < % Moisture < 90.0	J	UJ	
% Moisture > 90.0	J	R	

samples which h	ave ≤ 50 % solids		

Note: If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.

Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
<u> </u>		
		1

All criteria were met _	
Criteria were not met	
and/or see below	N/A

FIELD DUPLICATE PRECISION

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. If large RPDs (> 50%) is observed, confirm identification of samples and note difference in the executive summary.

Sample IDs	:				Matrix:
COMPOUND	SQL	SAMPLE	DUPLICATE	RPD	ACTION
	ug/L	CONC.	CONC.		
No field/laboratory	duplicat	e analyzed with thi	s data package. MS/M	SD % red	covery RPD used to
·	assess p	recision. RPD with	in the required criteria	of < 50 %	, 0.
		- A.			

Actions:

- a. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.
- b. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:
 - If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).
 - ii. If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.
 - iii. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.
 - iv. If both sample and duplicate results are not detected, no action is needed.

OVERALL ASSESSMENT OF DATA Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data.

Note: The Contract Laboratory Program Project Officer (CLP PO) must be informed if any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Overall assessment of the data:

Results are valid; the data can be used for decision

making purposes.